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EXECUTIVE SUMMARY 

This report summarizes work done to evaluate the seismic vulnerability of Vermont 

bridges and develop an analytical tool for VTrans to continue assessing seismic 

vulnerability of bridges in the future. The practical constraints on making individual 

seismic vulnerability evaluations on an ongoing basis for the nearly three-thousand 

bridge inventory requires an approach which rapidly identifies which are the more 

vulnerable bridges, considering their criticality in the transportation network, that warrant 

closer, and where needed, individual analysis. The earthquake engineering community 

has expended considerable effort and made progress in methodologies for assessing 

seismic vulnerability of bridges at the system-wide level to identify more vulnerable 

structures for prioritized attention. The Federal Highway Administration (FHWA) has 

developed seismic vulnerability rating systems for bridge inventories, with the most 

recent version being the Seismic Retrofitting Manual for Highway Structures: Part 1 

Bridges, published in January 2006. This manual provides a screening methodology 

based on bridge vulnerability characteristics identified in post-earthquake inspections and 

vulnerability research.  Some characteristics are recorded in the National Bridge 

Inventory (NBI) database while others need information from site visits or bridge plans. 

The New York State Department of Transportation also developed a seismic vulnerability 

screening methodology in 1995, updated through 2004, based on earlier versions of the 

FHWA manual, which allows for a system-wide screening of bridges using data from the 

NBI database, also supplemented with additional bridge-specific information.   

The goal of this project for VTrans was to develop a system-wide seismic 

vulnerability rating method which required only the information in the Vermont NBI 

database, together with already present supplemental information on certain bridge 

features, and which also accounted for bridge condition. A rating tool based on readily 
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available features is needed for low-to-moderate seismic hazard regions, such as 

Vermont, since while seismic risk is a necessary and appropriate concern, there are 

limited agency resources available to address the numerous hazards to bridges, in 

addition to seismicity.  The Vermont Rapid-Seismic-Screening-Algorithm (VeRSSA) 

developed through this study is an approximate quantification of seismic vulnerability for 

bridges.  It provides a quantitative seismic vulnerability rating for the Vermont bridge 

inventory and can be refined through additional evaluation focused on relatively more 

vulnerable bridges. It is also important to recognize that the VeRSSA can be applied to 

each year’s installment of the NBI database to maintain an ongoing record of seismic 

vulnerability in the bridge inventory. Furthermore, the gap between this system-wide 

screening level vulnerability rating and individual bridge ratings could be narrowed for 

some bridges by obtaining measures of certain additional bridge characteristics for the 

NBI database, which are described in this report. 



 

 

vi 

 

ACKNOWLEDGMENTS 

This work was funded by the Vermont Agency of Transportation (VTrans). 

Administrative support provided by the University of Vermont Transportation Research 

Center (UVM TRC) is appreciated.  The authors thank the following UVM students who 

contributed to this report: Tyler Kuehl, Ian Anderson, and Connor Butwin.  We also 

thank the VTrans personnel who supported the work of this project including Emily 

Parkany, Chris Benda, Pam Thurber, Wayne Symonds, Jason Cloutier, Justin White, 

Joshua Martineau, and George Colgrove.   

 

. 
  



 

 

vii 

 

TABLE OF CONTENTS 

1. Introduction .............................................................................................. 1 

1.1 Introduction ..................................................................................................... 1 

 The Study Approach .............................................................................. 10 

1.2 Background of Bridge Seismic Vulnerability ............................................... 12 

 Observational Findings .......................................................................... 12 

 Theoretical and Analytical Findings ...................................................... 13 

 Characteristics of Vulnerable Bridges ................................................... 14 

2. Analyses for Vermont ............................................................................ 14 

2.1 Applicable Vermont Bridge Design Standards ............................................. 14 

 VTrans Structures Design Manual ......................................................... 14 

 FHWA 2006 Seismic Retrofitting Manual ............................................ 15 

2.2 Vermont Seismic Hazard ............................................................................... 16 

2.3 Analysis Descriptions .................................................................................... 17 

 Screening by Characteristics .................................................................. 17 

 Individual Bridge Analysis .................................................................... 22 

3. Analysis Results ..................................................................................... 32 

3.1 Individual Bridge Analyses ........................................................................... 32 

 Static Pushover Analysis........................................................................ 33 

 Damage Index ........................................................................................ 34 

 Potential to Exceed Horizontal Shear Force Capacity ........................... 35 

 Potential for Bent Cap Displacement (Drift) ......................................... 36 

3.2 VeRSSA Screening by Vulnerability Characteristics ................................... 36 



 

 

viii 

 

4. Seismic Vulnerability Rating Conclusions and Recommendations....... 37 

4.1 Bridge Seismic Vulnerability Sources .......................................................... 37 

 Comments on the Recommended Seismic Vulnerability Screening 

Procedures for Vermont Bridges ........................................................... 40 

5. References .............................................................................................. 43 

APPENDICES ............................................................................................................... 47 

 



 

 

ix 

 

LIST OF TABLES 

 

Table           Page    

 

Table 1.1 DOT Questionnaire Responses ................................................................................. 2 

Table 1.2 DoT Seismic Vulnerability Screening Practices Questionnaire Responses ............. 3 

Table 1.3 Spectral acceleration values used for low and low-moderate seismic hazard 

scenarios ........................................................................................................................ 9 

Table 2.1 VeRRSA Vulnerability Screening Characteristics ................................................. 18 

Table 2.2 Summary of Bridge Bent Model Lateral Ductility Characteristics ........................ 25 

Table 2.3 VTrans Bridge Seismic Vulnerability Evaluation Summary of Bridge Model 

Input and Analysis Parameters.................................................................................... 27 

 

 

 

 

 

 

 

 



 

 

x 

 

LIST OF FIGURES 

 

Figure  Page

 

Figure 1.1  975 – year return period PGA overlay on ~2800 State Long Bridges in    

VTrans NBI ................................................................................................................... 5 

Figure 1.2  Multiple span bridge types in Vermont and the U.S. ....................................... 7 

Figure 1.3  Bridges evaluated for this study (Photos courtesy of VTrans). ........................ 9 

Figure 2.1  Bridge seismically vulnerable feature examples (FHWA, 2012) ................... 19 

Figure 2.2  Bridge model column hinge moment-curvature relationships ....................... 25 

Figure 2.3  Column and beam section illustration with and without spalling .................. 26 

Figure 2.4  Time-history and bridge condition analysis combinations ............................. 27 

Figure 2.5  a – d  Seismic Hazard Level 1 through 4 target spectra with ensemble 

recorded ground motions ...................................................................................... 30 

Figure 2.6  PEER NGA East ground motion record locations (PEER, 2018) .................. 32 

Figure 3.1  Pushover force-displacement for Bridge A pristine and fully spalled and 

Bridge B pristine and fully spalled ....................................................................... 33 

Figure 3.2  Binned Damage Index by seismic hazard level .............................................. 34 

Figure 3.3  Binned Damage Index by bridge type and condition ..................................... 34 

Figure 3.4  Maximum displacement vs. maximum base shear during applied ground 

motions and pushover for bridge A and bridge B, pristine and fully spalled ....... 35 

Figure 3.5 Histogram of vulnerability rating values for multiples span bridges from 

VeRRSA analysis.................................................................................................. 36 

 

 



 

 

1 

 

 

 

Quantifying the seismic vulnerability of existing bridges within any transportation 

agency portfolio is a vital aspect of managing those transportation assets. Quantification is 

hampered by the number of bridges involved, the degree to which any bridge has deterio-

rated, the knowledge and effort required for the quantification analysis itself, and the fact 

that the condition of the inventory is continually changing. That these challenges hamper 

quantification is reflected by the finding that only two of fifteen responding state transpor-

tation agencies in low-to-moderate seismic regions of the United States indicated perform-

ing such quantification in a recent survey hosted on the American Association of State 

Highway and Transportation Agency (AASHTO) listserv as part of this research (Tables 

1.1 and 1.2). Seismic vulnerability is a realistic consideration in Vermont given that the 

seismic hazard potential in northwestern Vermont is the fifth highest in the continental U.S.  
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Table 1.1 DOT Questionnaire Responses 

Seismic 
Hazard 
Level 

in 
State %

 o
f 

Su
rv

ey
  

R
e

sp
o

n
se

s 

Q2-Does 
your DOT 
rate exist-

ing 
bridges for 

seismic 
vulnerabil-

ity? 

Q3-What seismic 
vulnerability rating 

method(s) does 
your DOT follow? 

Q4-Does your DOT 
have specific post-EQ 

inspection proce-
dures? 

Q4-Those pro-
cedures are: 

Low 36% 

No - Yes 1 

No - No - 

No - Yes Not specified. 

No - No - 

No - No - 

No - No - 

No - No - 

No - Yes 2 

L-M 32% 

No - No - 

No - No - 

No - No - 

Yes (a.) 
State specific proce-
dures (latest version 

in 2004) 
Yes 

3 

Yes (b.) 
State specific proce-

dures  
No - 

No - Yes Not specified. 

No - No - 

M-H 32% 

Yes (c.) 
FHWA 2006 Seismic 

Retrofit Manual 
Yes 

4 

No - Yes 5 

Yes (d.) 

State specific devel-
oped in 1989/1990 

based on FHWA 
Seismic Retrofit 
Guidelines for 

Bridges. 

No 

6 

No - No - 

Yes (e.) 
FHWA 2006 Seismic 

Retrofit Manual 

General  opera-
tions/logistics based. 
Not inspection spe-

cific 

- 

No - Yes 7 

No - No - 
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1 Use commercial software for hazard monitoring. Inspection procedures for bridges only. Specifics not 

provided.      

2 Not specified.  Tall, movable, and masonry bridges are priority.           

3 State specific post EQ procedures are available online.           

4 Districts respond first then bridge inspection crews follow up if conditions warrant.        

5 State DOT’s Structures Emergency Response Plan           

6 No specific procedures for earthquakes.  State has an Emergency Response Plan for catastrophic events 

response.     

7 There is a plan for bridges. Specifics not provided.   

 

a. Procedures based on a combination of FHWA and state specific guidance.          

b. For certain bridges with widening, deck or superstructure replacement. Very few retaining walls or 

slopes are evaluated. Procedures based on a combination of FHWA and state specific guidance.           

c. Seismic prioritization is based on a 1995 Study.  Bridges designed under the AASHTO code at that time 

were deemed to be at low risk and not considered in the study.  Vulnerability of existing retaining walls 

and slopes has not been studied.       

d. In 1991 bridge seismic vulnerability ratings were performed on the state highway system. 286 bridges 

were identified as in need of seismic retrofit. Retaining walls were not evaluated.           

e. Only when preparing plans for major rehabilitation.  

 

Table 1.2 2013 DoT Seismic Vulnerability Screening Practices Questionnaire Responses 

Seismic 

Hazard 

Level 

Number of 

responding 

DOT’s 

which are 

in this seis-

mic hazard 

level. 

Percentage of 

the Category 

Responses out 

of the Overall 

Survey Re-

sponses 

Percentage of re-

sponding DOT’s that 

answered yes to the 

question: “Does your 

DOT rate existing 

bridges for Seismic 

Vulnerability? 

Percentage of re-

sponding DOT’s 

that answered yes 

to the question: 

“Does your DOT 

have a specific pro-

cedure for post-

earthquake inspec-

tion of bridge and 

associated walls 

and slopes? 

Low 8 36% 0% 38% 

Low to 

Moderate 

7 32% 29% 29% 

Moderate 

to High 

7 32% 43% 57% 

Totals 22    

 

Figure 1.1 shows the locations of Vermont’s approximately 2,800 National Bridge 

Inventory (NBI) bridges and culverts together with the 1,000-year return period peak 

ground acceleration from 2002 USGS seismic hazard mapping. The 2002 hazard mapping 
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remains applicable for the 2014 through 2017 AASHTO LRFD specifications (AASHTO 

014, 2017) and the 2006 FHWA Seismic Retrofitting Manual for Highway Structures: Part 

1 Bridges (FHWA 2006) analysis.  The figure illustrates that the highest seismic hazard 

occurs in the northwestern portion of Vermont with a peak ground acceleration of bedrock 

estimated at 0.15 g, and upwards of 0.06 g elsewhere in Vermont.  Note that this figure 

illustrates the seismic hazard for exposed bedrock sites only and does not consider bridge 

or site characteristics, or the resulting risk.   
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Figure 1.1. 975 – year return period PGA overlay on ~2800 State Long Bridges in VTrans NBI 
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Risk is defined as the product of the hazard times the consequences of the resulting 

potential damage outcomes, which must also be considered in quantifying seismic vulner-

ability. 

The project’s evaluation began by adapting the existing FHWA Seismic Retrofit 

Guidelines (FHWA, 2006) guidance on seismic vulnerability rating of bridges for Ver-

mont, to an existing New York State Department of Transportation (NYSDoT, 2004) 

screening methodology.  The NYSDoT screening incorporates tabulated NBI data with 

additional data acquired from as-built plans and site measurements, and serves as a rela-

tively rapid system-wide vulnerability rating tool.  This combination of the FHWA and 

NYSDoT rating methods was further refined by applying findings from detailed seismic 

vulnerability modeling, which was performed for typical Vermont multiple span bridges, 

to develop a vulnerability rating screening tool for Vermont.  The modeling considered that 

earthquake shaking depends on both geographic location and the site subsurface condi-

tions, and the effects of deterioration of the bridges. The latter deterioration was accounted 

for with reinforced concrete bents in both pristine condition, and with the concrete covering 

transverse steel being completely absent, to reflect a fully-spalled condition.   

The study focused attention on multiple span bridges as they are considered seis-

mically vulnerable in contrast to simple span bridges which are generally not considered 

to be seismically vulnerable (Buckle, 1991). Multiple span bridges with multiple girder-

supported decks represent 82% of the Vermont multiple span bridges, as illustrated in Fig-

ure 1.2. This bridge type category represents 55% of the 291,000 multiple span bridges 

nationwide, also as illustrated in Figure 1.2.  This single category is one-third of the 
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473,000 total, non-culvert, U.S. highway bridge inventory tracked through NBI, and is only 

surpassed in quantity by single span bridges.   

 

 
Figure 1.2. – Multiple span bridge types in Vermont and the U.S. 
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The interstate highway bridge building expansion from the 1950’s through the 

1960’s led to standardization of bridge designs among state transportation agencies, en-

couraged by sharing of plans and typical details (Catalog of Highway Bridge Plans, 1959). 

The result of this standardization is that similar bent and cross-beam dimensions were used 

for multi-girder bridges generally independent of the span lengths.  Bridge width differ-

ences are accommodated by additional columns for the wider bents. The resulting relatively 

small number of bridge bent configurations and use of multiple girder spans for 82% of 

Vermont’s multiple span bridges allowed the study to concentrate on the influence of 

ground motion variability, and the influence of deterioration, on the seismic vulnerability 

using two actual bridges in Vermont, representative of the inventory.   

The AASHTO bridge design standards in the period between 1953 and 1977 re-

quired nominal seismic design requirements consisting of minimum lateral force require-

ments on members as a percentage of the tributary design load acting on the members.  

These were between 2 and 6 percent of the vertical loads, substantially below the currently 

specified minimum 15 to 25 percent of tributary vertical load lateral force restraint required 

in the recent AASHTO codes (AASHTO 2014, 2017).  The seismic force requirements 

were gradually increased over time but did not exceed 6 percent of the vertical tributary 

loads until 1977, as shown in the historical record of AASHTO seismic requirements in 

the Appendix.  
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Table 1.3 Spectral acceleration values used for low and low-moderate seismic hazard scenarios 

Hazard 

Scenario 
PGA (g) 

0.2 Second Spectral 

Acceleration (g) 

1-Second Spectral 

Acceleration (g) 
Comments 

Low 0.01 - 0.06 0.02 - 0.14 0.01 - 0.04 1, 2 

Low-Moderate 0.06 - 0.15 0.14 - 0.25 0.04 - 0.06 1, 2 
 

1. Values are derived from the USGS 2002 Seismic Hazard maps as published in AASHTO Bridge 

Design Specifications beginning in 2007. 

2. Values are for Seismic Site Class B conditions and boundary values are approximate. 

 

The evaluated existing bridges are multiple span girder bridges which are widely 

used for interstate and urban highways both in Vermont and across the U.S., examples of 

which are shown on Figure 1.3.  The bridges have reinforced concrete column supported 

bents configured in repetitive type configurations of square or round columns, with a 3 ft 

side width or diameter, respectively. The cross-beams supporting the girders are typically 

square or rectangular, between 3 and 4 ft in dimension.  

a) Bridge A with a two 

square column bent at 

30-ft-tall supporting 

simple span multiple 

beams 

  

b) Bridge B with a three 

round column bent with 

20-ft-columns 

supporting continuous 

span multiple girders 

  

Figure 1.3. Bridges evaluated for this study (Photos courtesy of VTrans). 
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The expected behavior of these two actual bridges constructed between 1964 and 

1967 as part of the interstate highway program, was analyzed using commercial structural 

analysis software, SAP2000, and ground motion ensembles selected to match current 

AASHTO seismic design spectra bounding the range of low-to-moderate seismic hazard.  

That range has been divided into two parts for this work. The first part covers from the 

minimal to low (L) seismic hazard range, reflected in Peak Ground Accelerations (PGA) 

between about 0.01 and 0.06g. The second step covers the low to moderate (L-M) seismic 

hazard range reflected in PGA’s of about 0.06 to 0.15g. Table 1.3 summarizes the spectral 

acceleration values at both seismic hazard conditions.   

The analyses considered both pristine bridge conditions, matching the originally 

constructed concrete and steel design properties, and deteriorated conditions reflecting the 

concrete cover over transverse reinforcing steel being fully-spalled to the outside face of 

the confining bars.  It is important to note that the fully-spalled condition which was ana-

lyzed assumes the reinforcement is still connected to the concrete and interacting with it. 

 The Study Approach 

The evaluations for this study incorporated the following elements, beginning with 

identifying the existing state of practice associated with the various engineering elements 

comprising seismic evaluation and design of bridges, followed by specific evaluations 

applicable to the Vermont bridge inventory: 

• Reviewed: 

o Published reports and guidance on bridge seismic vulnerability based on 

observed behavior in earthquakes.  
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o Published reports of observed behavior from testing existing 

bridges/frames (e.g., Eberhard and Marsh, 1997a and b) 

o Published reports on bridge weaknesses identified in work on deterioration 

effects. 

o Publications on spalled concrete beam and column behavior. 

o Publications on Damage Index (DI) as a cumulative damage measure. 

• Conducted a survey of state DOTs regarding their practices of conducting seismic 

vulnerability of bridges. 

• Performed a preliminary screening for Vermont bridges using a variation of the 

NYSDoT screening. 

• Analyzed representative examples of existing Vermont bridges subjected to earth-

quakes meeting the AASHTO LRFD criteria for Vermont. 

• Synthesized the state of practice information with the preliminary screening and 

specific analyses to develop a screening tool applicable for Vermont bridges. 

• Performed a final screening of Vermont bridges using the Vermont Rapid Seismic 

Screening Algorithm (VeRSSA) developed through this study. 

 

The combination of observational, experimental, and theoretical investigations 

evaluated in published literature support the analyses which led to the recommended 

screening algorithm for evaluating system-wide seismic vulnerability for Vermont bridges.   
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 Observational Findings 

The bridge seismic vulnerability evaluation benefited from published investigations 

of seismic damage compiled for several earthquakes through the 1960’s and early 1970’s 

in Japan and including significant earthquakes in the United States and Chile.  Those in-

vestigation reports show trends of damage types occurring to bridges where seismic forces 

were either underestimated or not considered.  Those potential underestimation scenarios 

are also possible for low to moderate seismicity regions in the U.S., which in general, have 

seen an increase in the estimated hazard as more recorded earthquake motion data becomes 

available. 

The earliest of the post-earthquake investigation reports reviewed was by the Earth-

quake Engineering Research Center (EERC) at Berkeley of seismic damage and design 

practices, which includes worldwide literature on seismic design of bridges particularly 

focused on work in Japan.  It included bridges damaged by earthquakes in Japan between 

1923 and 1968, and bridges in the 1964 Alaska earthquake, the Chilean 1971 earthquake 

and the 1971 San Fernando earthquake in California.  The report development coincides 

with increasing research attention, and more importantly, supportive funding within the 

United States, for seismic risk mitigation which followed the large earthquakes in the dec-

ade preceding the 1971 San Fernando earthquake. 

The EERC publication is pertinent to low to moderate seismic regions such as Ver-

mont.  AASHTO seismic design requirements before the 1970’s were low.  The historical 



 

 

13 

 

record of seismic loading requirements in the appendix shows that seismic design require-

ments were initially left to the engineer’s discretion through and including the 1953 

AASHTO standards, and subsequently increased in the 1961 AASHTO standards to a min-

imum horizontal resistance requirement at each member of 2 to 6 percent of the vertical 

forces, depending on the foundation bearing conditions.  Beginning in 1977 the horizontal 

resistance requirements were increased to 25 percent of vertical loads, and subsequently 

adjusted through the current (AASHTO 2017) values of either 15 or 25 percent of vertical 

forces, depending on the design spectral acceleration values at a location.    

This underestimation of potential seismic loading is analogous in general terms, to 

how the seismic demand appears to have been underestimated for those earlier Japanese, 

Chilean and U.S. earthquakes where damage was cataloged.   

 Theoretical and Analytical Findings 

The largest body of published work on seismic damage is from theoretical and an-

alytical work.  Most of this work begins in the early 1970’s.  An account of the state of the 

practice of seismic design at that time, is given by the following quotation from the EERC 

publication  “Chapter IV presents specifications for the earthquake-resistant design of 

bridges as currently used by many organizations.  Emphasis is placed on Japanese specifi-

cations as they are judged by the authors of the EERC report to be the most comprehensive 

and modern of any seismic design regulations used throughout the world.  In addition, 

Chapter IV presents a summary of seismic regulations for 21 countries of the world.”   
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 Characteristics of Vulnerable Bridges 

The FHWA 2006 seismic retrofitting manual explains the structure characteristics 

which create seismic vulnerability in bridges.  Bridge vulnerability factors evidenced in 

post-earthquake inspections typically include span unseating (either transverse or lateral), 

toppling bearings, column hinging (confinement and longitudinal reinforcement splice 

failures), load concentrations where there are abrupt differences in column stiffness along 

bridge alignments, and deck and girder impact pounding to abutments, in addition to 

foundation failure due to soil liquefaction and lateral flow. 

 

 

 VTrans Structures Design Manual 

The VTrans Structures Design Manual (VTrans 5th Edition, 2010), contains 

requirements for design of new bridges and for maintaining and rehabilitating existing 

bridges, earth retaining structures, and buried structures following the AASHTO LRFD 

design standards. In terms of seismic design requirements, the manual indicates that it is 

generally not necessary to consider earthquake effects because of the low seismicity in the 

region.  Specifically, Section 3.2 Load Factors and Combinations, of the manual states 

under “Extreme Event I: Load combination including earthquake effects.” the following:  

“Generally, Vermont is in seismic zone 1 (LRFD 3.10.6). The designer need not consider 

earthquake load effects other than what is required in LRFD Section 3.10.9.2 for most 

projects. Some locations may have soil conditions where the designer may need to follow 
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the requirements of seismic zone 2. For covered bridge design, refer to Section 3.8 in this 

manual.” 

The 2017 AASHTO 7th Edition LRFD (AASHTO 2017) requirements in Section 

3.10.9.2 specify that in Seismic Zone 1, as defined per Section 3.10.6, where the 

acceleration coefficient, As, is less than 0.05g, the horizontal design connection force in 

restrained directions shall not be less than 0.15 times the vertical tributary loads. Section 

3.10.9.2 further states that at all other locations in Zone 1, the horizontal design connection 

force shall not be less than 0.25 times the vertical tributary loads.  The acceleration 

coefficient, As, is above 0.05g in Vermont except at bedrock sites at the extreme south 

portions of the state, requiring the horizontal design connection forces to be at least 25% 

of the vertical tributary loads, in those areas.  The historical seismic load requirement 

record table in the appendix shows that the minimum 25% horizontal design connection 

force requirement was first specified in the AASHTO Standard Specification for Highway 

Bridges in the 12th Edition, in 1977. 

 FHWA 2006 Seismic Retrofitting Manual 

The VTrans Structures Design Manual includes reference to the FHWA Seismic 

Retrofitting Manual for Highway Structures: Part 1 – Bridges, dated January 2006 (FHWA 

2006). The FHWA manual outlines prioritization and corresponding seismic design 

requirements based on importance of the bridges within the transportation system, seismic 

hazard levels, and remaining service life.  That report provides a recommended 

vulnerability analysis flow chart and threshold values for retrofit decisions, accounting for 
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factors including remaining service life, how essential a bridge is to the transportation 

network, and the seismic hazard.  

Note that the FHWA manual indicates that bridges with less than 15 years of 

remaining service life do not require seismic analysis for any retrofitting evaluation.  While 

this manual serves as a guideline rather than a standard, our survey of state transportation 

agency seismic screening practices indicates it has been adopted by some agencies for 

seismic evaluations.   

 

The probabilistic seismic hazard prescribed by AASHTO 2017 and FHWA 2006 

as estimated by the United States Geological Survey (USGS) for the contiguous United 

States is illustrated on maps in AASHTO 2017.  These figures provide the predicted Peak 

Ground Acceleration (PGA), and Pseudo-Spectral Accelerations at natural periods, Tn, of 

0.2, and 1.0 seconds for a single degree of freedom system with 5% of critical damping for 

a 7% in 75-year probability of exceedance (975-year return period).  These values are based 

on the 2002 probabilistic seismic hazard mapping by the USGS, which remains in effect 

for the current AASHTO and FHWA recommendations.   

The probabilistic seismic hazard values for other probability of exceedance values 

are also suggested for evaluating structures for seismic vulnerability and corresponding 

seismic design and retrofit requirements corresponding to FHWA 2006 and AASHTO 

2017.  The FHWA 2006 guidance references the 50% in 75-year probability of exceedance 

(108-year return period), corresponding to the Lower Level earthquake threshold criteria 

in the FHWA 2006 Seismic Retrofit Manual, applicable for performance based seismic 
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retrofit categories.  These hazard values are no longer available as an online USGS seismic 

hazard tool.  Note also that the AASHTO LRFD 2017 specifications indicate in Section 

3.10.1 that higher-level earthquakes may be warranted for bridges with non-conventional 

construction and where higher performance requirements are warranted for special bridges.  

 

 Screening by Characteristics  

The system-wide screening applied to Vermont bridges references bridge 

characteristics which are either directly recorded in the NBI database or can be inferred 

through other NBI catalog data.  The vulnerability categories of span, column, and 

foundations are those prescribed by the FHWA 2006 manual and correspond to the types 

and frequencies of damage observed in most post-earthquake reconnaissance.  Table 2.1 

contains the vulnerability characteristic types, corresponding NBI items, and the range of 

values for each item.  These characteristics are further explained in the following sections.  
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Table 2.1 VeRSSA Vulnerability Screening Characteristics 

Item Charac-

teristic 

NBI Item 

Number 

Item Name Item Description NBI Item Value 

Least 

Vulner-

able 

Most 

Vulner-

able 

Default 

Value 

V1 Span vul-

nerability 

43A Kind of Ma-

terial and/or 

Design 

Is this a continu-

ous span bridge? 

Contin-

uous 

Simple N.A. 

V2 Bearing 

type(s) 

224 Type of Ex-

pansion Bear-

ing Device 

Are the bearings 

readily subject to 

toppling? 

All oth-

ers 

Note 1 N.A. 

Span 

Skew 

34 Skew Does the bridge 

skew create more 

chance of span 

unseating? 

<20 de-

grees 

>20 de-

grees 

N.A. 

Span Type 43B Type of De-

sign and/or 

Construction 

Does this bridge 

have girder and 

floor beam spans? 

Not this 

type 

This 

type 

N.A. 

Structural 

Condition 

Rating 

239 Deficiency 

Status of 

Structure 

Is this structure 

cataloged as 

structurally defi-

cient? 

Not SD SD N.A. 

V3 Fracture 

Criticality 

of Struc-

ture 

801 FCM Detail Are fracture criti-

cal members pre-

sent? 

None 

present 

Present N.A. 

Lique-

faction 

Founda-

tion Sta-

bility 

225 A-G Type of 

Foundation at 

(Abutment, 

Pier) 

Are foundations 

likely directly on 

rock? 

B E E 

Col-

umn 

Vul-

nera-

bility 

Column 

Ductility 

N.A. Seismic Ret-

rofit Category 

per FHWA 

2006 

Is this Seismic 

Retrofit Category 

A or B? 

A or B C or D N.A. 

Abut-

ment 

Abutment 

damage 

potential 

N.A. Seismic Ret-

rofit Category 

per FHWA 

2006 

Is this above or 

below Seismic 

Retrofit Category 

D? 

<D D N.A. 

34 Skew Is the span skew 

greater than 40 

degrees? 

<40 de-

grees 

>40 de-

grees 

N.A. 

 

2.3.1.1 Span Vulnerability 

Span damage resulting from seismic shaking ranges from deck settlement to spans 

unseating from bents.  Settlement type damage arises from girders sliding off bearings or 

support pedestals, or inherently less stable bearings toppling, but remaining on the bents.  



 

 

19 

 

Span unseating occurs due to insufficient bearing seat dimensions, with spans sliding off 

the column bent support.  Simple span bridges are most vulnerable by nature of that design 

type, and skewed alignments exacerbate the risk.  Figure 2.4 illustrates types of span 

vulnerability features.    

 
 

Figure 2.1 – Bridge seismically vulnerable feature examples (FHWA, 2012) 
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2.3.1.2 Column and Bent Vulnerability  

Column vulnerability arises from insufficient ductility capacity in the hinges which 

can develop at locations of maximum moment, and from insufficient shear capacity.  

Maximum moments typically occur at the top and bottom of each column.  Reinforced 

concrete columns and bent frames designed prior to adoption of seismic detailing in more 

recent design codes can have insufficient shear reinforcement and concrete confinement 

where hinges develop.  This results in brittle fractures and failures of reinforced concrete 

at those hinges, and decidedly non-ductile behavior which can lead to abrupt collapse of 

the column and bent frames.  

2.3.1.3 Abutment Damage Vulnerability  

Abutment damage vulnerability arises from ground settlement under and in front 

of the bridge approaches.  

2.3.1.4 Liquefaction-Induced Damage Vulnerability  

Large foundation settlements and lateral movements can occur where the 

foundation soils lose most or all their shear strength due to liquefaction occurring because 

of substantial ground shaking where there is loose and submerged granular soil.  

Liquefaction potential evaluation requires site-specific geotechnical analyses requiring 

information on the soil types, density, depth to water table, and expected earthquake ground 

shaking.  Liquefaction potential is greatest for loose sands with low silt contents.  Properly 

evaluating soil density requires careful attention to the subsurface exploration procedures 

used and appropriate laboratory testing is needed to quantify soil gradation, including soil 

fines content.  It is difficult to ascertain whether liquefaction potential is properly identified 
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in subsurface explorations for a bridge project by only viewing the exploration logs.  

Moreover, the NBI database does not include subsurface data in the detail which can be 

available from boring logs so quantifying liquefaction vulnerability for screening by bridge 

characteristics requires using proxy subsurface features in the NBI.  Fortunately, VTrans 

has been cataloging the type of foundation at bridges and using foundations bearing on 

ledge (bedrock) as a category.  This study characterized the bridge sites as non-liquefaction 

susceptible in those cases, and used a conservative default seismic site class category of E 

for all situations where the bridge foundation is not specified in the NBI to be ledge 

(bedrock). 

2.3.1.5 Earthquake Hazard 

The earthquake hazard used for the screening evaluation is the FHWA 2006 

criterion of the spectral acceleration at 1-second period estimated by the USGS for the 

bridge location.  The 1-second spectral acceleration is considerably less than the spectral 

acceleration occurring at the shorter natural period of typical Vermont bridges, of 

approximately 0.3 to 0.7 seconds.  Although there is reason to use the 0.2-second period 

spectral acceleration, or a weighted average between the 0.2 and 1 second spectral 

accelerations, this study followed the FHWA 2006 criterion since the hazard value is used 

to compute a relative rather than absolute vulnerability ranking.  It was judged that using 

the existing criterion was appropriate for that purpose. 

Note that for simplicity in setting the spectral acceleration values within the 

screening tool spreadsheet, the spectral acceleration values correspond to the highest 1-
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second period spectral acceleration value in the county in which a bridge is located.  The 

conservatism associated with this simplification is within approximately 10 percent. 

 

 Individual Bridge Analysis 

2.3.2.1 Descriptions of Analyzed Bridges  

This describes the results of a detailed evaluation of a subset of VTrans’ bridges 

which represent 82% of Vermont’s entire multiple span inventory and which are 

widespread throughout the state’s interstate highways.   Most of the Vermont portion of 

the interstate highway system was constructed between the late 1950’s through about 1967 

with remaining links completed in mid-1970’s and the early 1980’s.  Approximately 90% 

of Vermont’s 195 multiple span interstate highway bridges are comprised of these multiple 

span concrete slab on steel girder structures.  Most non-water crossing spans are supported 

on two to three reinforced concrete columns with concrete pier cap substructures.   

Two representative bridges from this predominate category were analyzed for a 

total of eight cases of bridges from the multiple span, with multiple girder, inventory.  

These two bridges were each analyzed in their pristine state as constructed, and accounting 

for spalling type deterioration by removing the concrete cover over the transverse reinforc-

ing steel, with four sets of earthquake motions.  Those motions correspond to low and 

medium seismic shaking, both at firm and soft ground conditions. These bridges are shown 

in Figure 1.3.   
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2.3.2.2 Description of the Bridge Models 

The bridge models were developed to evaluate the structural capacity available up 

to the point of collapse during earthquake shaking.  These models evaluated the potential 

for damage to the reinforced concrete bents, and the potential for transverse (to roadway 

centerline) sliding of the girders from shaking exceeding the girder bearing restraint 

capacity. 

The SAP2000, version 17.3, structural analysis software was used to model the 

bridges for: (1) non-linear static pushover to compute total transverse displacement 

ductility capacity, and (2) non-linear seismic time-history analyses to simulate effects of 

expected earthquake shaking.  The models were non-linear finite-element structural 

representations of the reinforced concrete bents subjected to shaking from actual 

earthquake acceleration records.  These acceleration time-history records are described in 

the following section.   

The bridge frame models consisted of the following overall components: 

o Bridge columns and corresponding non-linear hinges 

o Bridge rigid-frame elements at the beam-column connection 

o Bridge beam frame elements and corresponding non-linear hinges 

o Girder tributary loads applied at the top of the cross beams 

The analyses were performed in two steps.  Step one consisted of analyzing the 

yield and ultimate moment capacity of the hinges.  This provided the basis for estimating 

the yield rotation for columns and beams, and horizontal yield displacement for the 

columns, as well as the ultimate rotation capacity for columns and beams, and 
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corresponding horizontal displacement capacity of the bent frames.  This provided the non-

linear models of the hinge behavior.  The criteria used for estimating yield and ultimate 

displacement of the columns and beams were based on planar deformations occurring 

across the column and beam cross sections, respectively.  The non-linear hinge properties 

were a moment-curvature representation of the hinges based on the hinge capacity 

available as the concrete strained during hinge rotation, up to maximum hinge capacity 

corresponding to the point of concrete crushing failure within the hinge zone.   

The concrete compression stress-strain model followed the Mander formulation for 

reinforced concrete accounting for the confinement possible from reinforcing steel stirrups.  

In this case, the Bridge B spiral stirrups at 3-1/2 inches on-center spacing enhanced the 

concrete crushing strain capacity while the Bridge A square stirrups at 12 inches on-center 

were too widely spaced to increase the concrete crushing capacity beyond that of 

unconfined concrete. 

Hinge yield rotation – The yield rotation capacity was chosen as the rotation 

associated with reaching yield strain on the outermost tension side reinforcing steel, 

and corresponded to 0.00138 for Grade 40 steel. 

Hinge ultimate rotation capacity – The ultimate column rotation was chosen 

to be limited by the maximum computed concrete compressive strain before 

crushing based on the Mander formulation.  

The column moment-curvature relationships are illustrated in Figure 2.2.  They are 

developed using a moment-curvature modeling function within SAP2000 based on the 

column dimensions and reinforcing shown on the as-built plans for the bridges.  Two 
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conditions were modeled.  The pristine condition represents the conditions shown on the 

as-built plans with the design unconfined compressive strength concrete of 3000 psi.  The 

fully spalled condition represents concrete spalled off to the outside face of the transverse 

reinforcing. The reinforced concrete sections for pristine and spalled conditions for each 

study bridge are illustrated in Figures 2.3 a and b.   

 
Figure 2.2 Bridge model column hinge moment-curvature relationships 

 

 

Table 2.2 Summary of Bridge Bent Model Lateral Ductility Characteristics 

Pushover values for  Bridge Bridge A  Bridge A Bridge B Bridge B 

 Units 

Fully 

Spalled Pristine 

Fully 

Spalled Pristine 

Yield Point Deflection feet 0.106 0.077 0.044 0.028 

Yield Point Base Shear kips 145 160 185 224 

Ultimate Displacement 

Capacity feet 0.48 0.48 0.44 0.55 

Maximum Displace-

ment Base Shear kips 173 188 245 228 

Displacement Ductility 

Capacity  4.5 6.2 9.9 19.6 

Total Static Pushover 

Energy Capacity ft-kips 57.8 65.3 83.1 122.2 

Bridge Bent Trans-

verse Tn  (initial) seconds 0.62 0.51 0.48 0.35 
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Step two consisted of placing the hinge properties into the frame models and per-

forming the static push-over capacity and time-history analyses.  The models were each 

subjected to seismic shaking from 70 unique ground motion time histories in a non-linear 

direct integration of the model response for a total of 380 combinations of bridge configu-

ration and ground motions as shown in Figure 2.4. Model input and analysis parameters 

including damping are shown in Table 2.3. 

 

 

 
a) Bridge A Column (left) and Beam (right) Sections 

 

 

b) Bridge B Column (left) and Beam (right) Sections 

Figure 2.3 Column and beam section illustration with and without spalling 
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Figure 2.4 Time-history and bridge condition analysis combinations 

 

Table 2.3 VTrans Bridge Seismic Vulnerability Evaluation Summary of Bridge Model Input and 

Analysis Parameters 
Damping: 

Proportional damping by direct specification 

Mass Proportional Coefficient = 0.634 

Stiffness Proportional Coefficient = 3.9E-03 

Time Integration Parameters: 

Hilber-Hughes-Taylor   Gamma=0.5, Beta=0.25, Alpha =0 

Maximum Newton-Raphson Iterations per Step = 40 

Integration Convergence Tolerance = 1.0E-04 

Computing the behavior of the bridges was done through an incremental analysis 

which solved for each node, for each static load increment in the pushover analysis, and 

for each acceleration increment at each time-step of the time-history, to achieve 

equilibrium at each node.  The static pushover force was applied at the cross-beam and the 
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time-history acceleration was applied at the base of the columns.  Each increment of the 

analysis required multiple iterations of estimated displacements to achieve equilibrium at 

each of the nodes until the estimated and computed displacements converged within the 

specified tolerances. 

The seismic analysis required solving, via direct integration, for each node, the 

structural displacements necessary for equilibrium according to the following equation of 

motion: 

𝑀𝑥̈(𝑡) + 𝐶𝑥̇(𝑡) + 𝐹(𝑥)𝑡 = 𝑀𝑥̈𝑔(𝑡) 

(eq 2) 

where: 

M = mass matrix 

C = damping matrix 

F = nonlinear restoring force function 

(t) = relative acceleration vector of degrees of freedom  

ẍg(t) =  applied earthquake acceleration at the base of the model  

ẋ(t) = relative velocity vector of degrees of freedom 

x(t) = relative displacement vector of degrees of freedom 

The seismic analysis advanced sequentially in time steps not exceeding that of the 

earthquake ground motion records, which were typically 0.0024 to 0.01 seconds each, with 

the records typically lasting from 30 to 100 seconds.   
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Corresponding base shear and member displacements are available at the end of 

each incremental analysis step, and these are used to evaluate: 

• Structure lateral displacement  

• Hinge rotations and corresponding moments in the hinges  

• Horizontal shear forces at the column bases and at girder bearing level  

2.3.2.3 Description of the Ground Motion Time Histories  

Ground motion time histories were obtained from the Pacific Earthquake Engi-

neering Research (PEER) center NGA West 2 database. The time histories were selected 

to match the design spectra for two bounding seismic hazard conditions in Vermont, per 

the AASHTO 2014 LRFD, which correspond to a 7% in 75-year probability (1033-year 

return period) of exceedance for the extreme northwest, and southeast of Vermont.  These 

target design spectra are shown on Figures 2.5 a-d along with the spectral accelerations for 

each of the time-history records within the ensembles chosen to match those spectra.  
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a) Seismic hazard level 1 

 
b) Seismic hazard level 2 

 
c) Seismic hazard level 3 

 
d) Seismic  hazard level 4 

Figure2.5 a – d  Seismic Hazard Level 1 through 4 target spectra with ensemble recorded ground 

motions 
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The ground motion time history filtering of the PEER database was made such 

that the motions match as closely as possible the conditions which could occur with mo-

tions acting on Vermont bridges. Specifically, the motions met the following criteria: 

• All motions were unscaled from the original recorded motions. 

• Motions were selected from source locations which met either Seismic Site 

Class B (firm ground) or E (soft ground) conditions, based on the site class 

conditions reflected in the average shear wave velocity values,Vs30, in the top 

30 meters at the source sites. 

• Motions were from earthquakes of Magnitude 5 to 8, and were not pulse mo-

tions, with a minimum distance to faulting of 5 kilometers, and usually greater 

than 20 kilometers. 

These constraints were used to obtain ensembles of motions which were as close 

as feasible in bracketing the range of typical bridge site conditions, namely Seismic Site 

Class B and E, for the seismic hazard conditions in Vermont. 

The PEER NGA East ground motion database became available during the latter 

portion of this work and was searched for ground motions meeting the target spectra.  Ide-

ally the time history records from the eastern North America tectonic region could be used 

for the analyses.  Unfortunately, the available motions do not match the target spectra with-

out scaling.  Figure 2.6 illustrates locations of the ground motions which were available in 

the PEER NGA East ground motion catalog. 
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Figure2.6 -PEER NGA East ground motion record locations (PEER, 2018) 

The summary of the ground motion time-history record characteristics used for 

these analyses is provided in the appendix. 

 

 

The following describes results of individual seismic vulnerability analyses made 

on Bridge A and Bridge B. 
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 Static Pushover Analysis 

The results of non-linear static pushover analysis performed on each of the bridge 

bent models to estimate the yield values and ultimate displacement capacities, and corre-

sponding displacement ductility for each bent in both pristine and spalled conditions are 

shown on Figure 3.1 and in Table 2.2.  Highlights of the results are: 

• Bent frame displacement ductility is greater than 4.5 with the square columns and 

stirrups at 12-inches on-center, and more than twice that with the round columns 

and spiral stirrups at 3-1/2 inches on-center. 

• The bent natural period increases with the loss of the concrete cover, in both cases, 

and is significant, at 0.1 seconds increase, for both bridge models. 

• The yield displacements increase with concrete cover removed (spalled), with yield 

occurring at lower base shear forces. 

 

 
Figure 3.1 Pushover force-displacement for Bridge A pristine and fully spalled and Bridge B pris-

tine and fully spalled 
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 Damage Index 

The analysis results in histogram form for the ground motions applied to the two 

bridges in the previously described combinations of seismic hazard and seismic site class 

are shown on Figure 3.2. These damage potentials, reflected in the Damage Index (Park 

and Ang, 1985a and b) distribution, are based on minimal to low and moderate seismic 

loading. The figure illustrates that most damage index values are under 0.3, corresponding 

to negligible or minor damage occurring.   

 
Figure 3.2 Binned Damage Index by seismic hazard level 

 
Figure 3.3 Binned Damage Index by bridge type and condition 
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Figure 3.3 illustrates in histogram form the distribution of damage potential, also 

as categorized by Damage Index, for the two bridge models, in both pristine and fully-

spalled conditions.  These results indicate low potential for seismic damage to the concrete 

bent frames for these types of bridges in this low-to-moderate seismic hazard region. 

 Potential to Exceed Horizontal Shear Force Capacity 

Seismically imposed shear forces on the bridge models for the two seismic hazard 

categories considered in this work ranged to nearly 280 kips.  This compares with yield 

capacities ranging between 145 and 225 kips, and ultimate base shear capacities ranging 

between 175 and 275 kips, depending on the bridge and deterioration level.  Figure 3.4 

illustrates the computed maximum base shear and displacement for each of the bridge mod-

els in pristine and spalled conditions.  

 

Figure 3.4 Maximum displacement vs. maximum base shear during applied ground motions and 

pushover for bridge A and bridge B, pristine and fully spalled 
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 Potential for Bent Cap Displacement (Drift) 

The range of computed maximum bent cap displacements is also shown on Figure 

3.4.  Most displacements are less than the pushover yield values with maximum displace-

ments reaching nearly 3 inches at Bridge A and 1.5 inches at Bridge B, although most are 

under one-half of the maximum values.  The fully-spalled versions of each bridge have the 

largest maximum displacements. 

 

Results of screening of multiple span bridges by vulnerability characteristics using 

the VeRSSA are shown on Figure 3.5.  The rating range is a relative ranking for this group 

of bridges and corresponding seismic hazard range.  The numerical score indicates relative 

vulnerability with the lowest scores corresponding with the lowest relative vulnerability.   

 

 

Figure 3.5 - Histogram of vulnerability rating values for multiples span bridges from VeRSSA 

analysis 
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Generalizations regarding characteristics suggested by this rating are: 

• Most of the continuous bridges are in the lowest binned vulnerability rating 

categories. This reflects that the screening algorithm favors continuous 

bridges because of their generally lower susceptibility to span dropping.  Mod-

erate and higher vulnerability bridges are mostly simply supported span 

bridges.   

• Multiple girder bridges comprise nearly 90% of the lowest rated bridges, and 

between 70 and 80% of the highest vulnerability rated bridges.   

• Bridge plan availability reported in the NBI tabulation ranges from about 52% 

to over 90% with generally more than 80% availability for each vulnerability 

category.  This is promising for adding characteristics into the bridge database 

for further screening ability. 

 

 

Experience and analyses regarding seismic vulnerability of bridges described in 

published literature indicate that the vulnerability results from the presence of one or more 

bridge or site subsurface characteristics, coupled with seismic hazard, enumerated as fol-

lows: 

• Where there is insufficient ductility capacity in the substructure, principally 

where reinforced concrete is used, but not limited to concrete. The problem 
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occurs wherever the substructure displaces so much that it no longer has ca-

pacity to support the superstructure, and so masonry, steel, and timber sub-

structures are also susceptible. 

• Where there is fragility in the superstructure to substructure connections, such 

as bearings which topple and bearing connections which break.  

• Where the superstructure bearing dimensions are insufficient such that main 

support members fall off their supports when bearings topple or bearing con-

nections break. The drop can be several inches off a bearing pedestal, or the 

entire column height, depending on how much displacement occurs.  

• Where susceptible soils underlie the substructures and approaches such that 

liquefaction or flow slides cause settlement or lateral displacement, unless 

these are prevented with proper structural foundations or ground improve-

ment.  

• Where seismic hazards and bridge vulnerability are compounded by earth-

quake related scour, such as due to the catastrophic failure of an upstream 

dam. This is an uncommon combination of hazards, but it needs to be consid-

ered because of the potential extreme consequences.  

• Multiple span bridges are considered seismically vulnerable while single span 

bridges generally are not, based on post-earthquake damage observations.   

• Bridge seismic vulnerability also depends on the seismic hazard at the bridge 

location. The seismic hazard in Vermont is greatest in the northwest and de-

creases to the south. The expected bedrock ground motion at the northwest 
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portion of Vermont of 0.15 g is approximately 2.5 times more than along the 

Massachusetts border. 

• Earthquake motions originate in bedrock and can be amplified at the ground 

surface through overlying soils.  The amplification increases with thicker and 

softer soils overlying the bedrock, as recognized by evaluations made of the 

ground motions recorded during the 1989 and 1994 California earthquakes, 

and translated into seismic amplification factors recommended in AASHTO 

seismic design requirements. Those amplification factors range to 3.5 times 

the bedrock acceleration. This translates to AASHTO LRFD specified design 

earthquake ground accelerations ranging between 0.06 g for bearing on bed-

rock in southern Vermont, and 0.67 g in northern Vermont for bearing on 

thick, soft soils. 

• The Vermont inventory has bridges with each of the vulnerability character-

istics described above. Multiple span bridges comprise 22 percent of the high-

way bridges in the NBI database. Eighty-two percent of the multiple span 

bridges are multiple girder bridges comprised of steel or concrete girders with 

concrete decks, with the remaining 18 percent comprised of over 10 other 

bridge types in proportions illustrated in Figure 1.2. Bridges are widely dis-

tributed across Vermont (see Figure 1.1) such that the seismic hazard variation 

affects the inventory on essentially a state-wide basis.  
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 Comments on the Recommended Seismic Vulnerability Screening 

Procedures for Vermont Bridges  

The FHWA 2006 seismic retrofit manual screening recommendations reflect over 

20 years of development and refinement for highway bridges typical of the U.S. inventory. 

This development record along with the findings from this modeling of the Vermont mul-

tiple span multi-girder bridges is the background supporting the recommendation to use 

the FHWA 2006 retrofit screening criteria as an underlying basis for a system-wide rapid-

screening-algorithm using the Vermont NBI database.  

The recommended approach for quantifying the seismic vulnerability of Vermont 

bridges is to: 1) utilize the Vermont NBI database information for a system-wide rating 

followed by, 2) specific individual analyses of bridges with higher vulnerability ratings.  

Note that the system-wide ratings consider the criticality of bridge damage to the transpor-

tation system, considering average daily traffic, bypass detour length, and whether the 

bridge is on a National Defense Highway or the Designated National Network for Trucks. 

The Vermont Rapid-Seismic-Screening-Algorithm (VeRSSA) uses the NBI data-

base information, as supplemented with some of Vermont’s additional recordings (Cate-

gory Items above 116 through 823) to rank the bridge seismic vulnerability based on bridge 

and site characteristics which the FHWA 2006 manual identifies as indicative of vulnera-

bility.  

The FHWA 2006 screening protocols also consider factors not currently recorded 

in the NBI database.  These include detailed information on the subsurface conditions and 

foundation support, bearing seat dimensions for the superstructure, and the column ductil-
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ity resulting from the amount of confining steel present.  These characteristics are key fac-

tors in seismic vulnerability and in their absence from the NBI database, the VeRSSA is 

based on conservative assumptions for those factors. 

Cataloging those characteristics not in the NBI database for all multiple span 

bridges requires retrieving plans, where available, to get bearing seat dimensions, concrete 

reinforcing sizes, lengths, spacing, and steel grades, and foundation bearing information 

including foundation types and their dimensions, and the subsurface conditions which may 

be shown on the plans. The foundation and subsurface condition evaluation requires eval-

uation by geotechnical engineers, particularly for bridges constructed before the 1960’s, 

that is, prior to using the Standard Penetration Test (SPT) for subsurface explorations.  The 

older explorations usually rely on samples retrieved inside a driven pipe and have both 

limited soil data and descriptions which can be difficult or impossible to interpret in terms 

of seismic vulnerability. In other instances, the bridges may not have any recorded explo-

ration data. Consequently, engineering judgment needs to be applied for those situations 

unless modern subsurface explorations can be performed.  

The suitability of deep foundations to mitigate seismic hazard needs to be evalu-

ated, especially for older bridges constructed before modern subsurface explorations and 

attention to seismic hazards in design and construction. Such foundations, typically timber 

or steel piles in older bridges, need to be evaluated in terms of the strata where they obtain 

bearing, such that they are confirmed to bear below liquefiable zones.  They also need to 

be evaluated for sufficient reserve capacity in the event of liquefaction developing.  Also, 
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in the absence of as-built plans, judgment needs to be applied in relying that the foundations 

have been installed according to the drawings.   

Approach fill settlement vulnerability also needs to be considered, and is described 

as abutment vulnerability in the FHWA 2006 manual.  Seismic shaking can undermine 

abutments by causing loose soils to settle, susceptible soils to liquefy or laterally flow from 

under abutments.  The presence and reliability of subsurface explorations at the approaches 

is important in the same manner as for the abutment foundations.   

Cataloging this additional information should be prioritized within the goals of the 

bridge inspection and asset management efforts. This will substantially improve the bridge 

data available for the seismic vulnerability screening, and improve the reliability of the 

data used in the screening.  In the meantime, the current VeRSSA is intended to provide a 

conservative estimate of seismic vulnerability, although as with any practical screening 

method, this cannot be considered absolute.  Even a conservative screening approach in-

volves uncertainty and risk from underestimating vulnerability. 

The chosen vulnerability factors and weightings were judged to be moderately con-

servative and are based on validation checks on samples from each of the resulting ratings 

groupings.  The findings suggest these groupings are conservative with the caveat that the 

bridges in each vulnerability rating category should also be individually considered by 

VTrans engineers who are familiar with them.  There is no substitute for engineering judg-

ment to check that the screening is providing reliable results.   
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Historical Record of AASHTO Seismic Loading Requirements through 1983 

Year Reference Section Criteria 

1931 The American Association 

of State Highway Officials. 

(1931). Standard Specifica-

tions for Highway Bridges 

and Incidental Structures, 

1st Ed., The Association of 

General Offices, Washing-

ton DC. 

N/A none (no mention of earthquakes) 

1953 The American Association 

of State Highway Officials. 

(1953). Standard Specifica-

tions for Highway Bridges, 

6th Ed., The Association of 

General Offices, Washing-

ton DC. 

3.2.1.(de-

sign 

loads), 

3.4.1.(unit 

stresses) 

In both sections, earthquakes are mentioned but no quan-

tifiable details are provided. 

1961 The American Association 

of State Highway Officials. 

(1961). Standard Specifica-

tions for Highway Bridges, 

8th Ed., The Association of 

General Offices, Washing-

ton DC. 

1.2.20. EQ = (C)(D)provides lateral force at cg of structure; 

where C = 0.02/0.04/0.06 depending on supporting soil 

(i.e., spread footing bearing pressure or if piles are used), 

D = dead load (Live load may be neglected) 

1973 The American Association 

of State Highway Officials. 

(1973). Standard Specifica-

tions for Highway Bridges, 

11th Ed., The Association 

of General Offices, Wash-

ington DC. 

1.2.20. EQ = (C)(D)provides lateral force at cg of structure; 

where C = 0.02/0.04/0.06 depending on supporting soil 

(i.e., spread footing bearing pressure or if piles are used), 

D = dead load (Live load may be neglected) 

1977 The American Association 

of State Highway Officials. 

(1977). Standard Specifica-

tions for Highway Bridges, 

12th Ed., The Association 

of General Offices, Wash-

ington DC. 

1.2.20 EQ = (C)(F)(W); where C = (A)(R)(S)/(Z), F = framing 

factor (either 1.0 or 0.8), W = total dead weight of struc-

ture (lb.), A = max acceleration of bedrock (using risk 

map), R = normalized rock response, S = soil amplifica-

tion spectral ratio, Z = reduction for ductility and risk as-

sessment; Design of Restraining Features: EQ = (0.25) * 

(contributing DL) - column shears due to EQ 

1981 Federal Highway Admin-

istration. (1981). Seismic 

Design Guidelines for 

Highway Bridges. Final 

Report. Federal Highway 

Administration, Washing-

ton DC. 

4 Dependent on numerous classifications and factors. 
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Historical Record of AASHTO Seismic Loading Requirements through 1983 

Year Reference Section Criteria 

1983 The American Association 

of State Highway Officials. 

(1983). Standard Specifica-

tions for Highway Bridges, 

13th Ed., The Association 

of General Offices, Wash-

ington DC. 

3.21 EQ = (C)(F)(W); where C = (A)(R)(S)/(Z), F = framing 

factor (either 1.0 or 0.8), W = total dead weight of struc-

ture (lb.), A = max acceleration of bedrock (using risk 

map), R = normalized rock response, S = soil amplifica-

tion spectral ratio, Z = reduction for ductility and risk as-

sessment; Design of Restraining Features: EQ = (0.25) * 

(contributing DL) - column shears due to EQ 

 

Ground Motion Summary Information (PEER, 2018) 

RSN  

Spec-

tral 

Or-

di-

nate 

 Earth-

quake 

Name 

 Year  Station 

Name 

 Moment 

Magni-

tude 

 Mecha-

nism 

 Rjb 

(km) 

 Rrup 

(km) 

 Vs30 (m/sec) 

98  H2  "Hollister-
03" 

1974  "Gilroy Ar-
ray #1" 

5.14  strike slip 9.99 10.46 1428.14 

23  H2  "San Fran-

cisco" 

1957  "Golden 

Gate Park" 

5.28  Reverse 9.74 11.02 874.72 

4312  H1  "Umbria-03 1984  "Gubbio" 5.6  Normal 14.67 15.72 922 

4312  H2  "Umbria-

03_ Italy" 

1984  "Gubbio" 5.6  Normal 14.67 15.72 922 

1649 H1  "Sierra Ma-

dre" 

1991  "Vasquez 

Rocks Park" 

5.61  Reverse 37.63 39.81 996.43 

1649  H2  "Sierra Ma-

dre" 

1991  "Vasquez 

Rocks Park" 

5.61  Reverse 37.63 39.81 996.43 

146  H1  "Coyote 

Lake" 

1979  "Gilroy Ar-

ray #1" 

5.74  strike slip 10.21 10.67 1428.14 

146  H2  "Coyote 

Lake" 

1979  "Gilroy Ar-

ray #1" 

5.74  strike slip 10.21 10.67 1428.14 

608  H1  "Whittier 

Narrows-

01" 

1987  "Carson - 

Water St" 

5.99  Reverse 

Oblique 

26.3 30.03 160.58 

608  H2  "Whittier 

Narrows-

01" 

1987  "Carson - 

Water St" 

5.99  Reverse 

Oblique 

26.3 30.03 160.58 

643  H1  "Whittier 
Narrows-

01" 

1987  "LA - Won-
derland 

Ave" 

5.99  Reverse 
Oblique 

23.4 27.64 1222.52 

643  H2  "Whittier 
Narrows-

01" 

1987  "LA - Won-
derland 

Ave" 

5.99  Reverse 
Oblique 

23.4 27.64 1222.52 

680  H1  "Whittier 

Narrows-
01" 

1987  "Pasadena - 

CIT Kresge 
Lab" 

5.99  Reverse 

Oblique 

6.78 18.12 969.07 

680  H2  "Whittier 

Narrows-
01" 

1987  "Pasadena - 

CIT Kresge 
Lab" 

5.99  Reverse 

Oblique 

6.78 18.12 969.07 

703  H1  "Whittier 

Narrows-

01" 

1987  "Vasquez 

Rocks Park" 

5.99  Reverse 

Oblique 

47.25 50.39 996.43 

703  H2  "Whittier 

Narrows-

01" 

1987  "Vasquez 

Rocks Park" 

5.99  Reverse 

Oblique 

47.25 50.39 996.43 
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4083  H1  "Parkfield-
02_ CA" 

2004  "PARK-
FIELD - 

TURKEY 

FLAT #1 
(0M)" 

6  strike slip 4.66 5.29 906.96 

4083  H2  "Parkfield-

02_ CA" 

2004  "PARK-

FIELD - 

TURKEY 
FLAT #1 

(0M)" 

6  strike slip 4.66 5.29 906.96 

455  H1  "Morgan 
Hill" 

1984  "Gilroy Ar-
ray #1" 

6.19  strike slip 14.9 14.91 1428.14 

455  H2  "Morgan 

Hill" 

1984  "Gilroy Ar-

ray #1" 

6.19  strike slip 14.9 14.91 1428.14 

2715  H1  "Chi-Chi 
Taiwan 04" 

1999  "CHY047" 6.2  strike slip 38.59 38.62 169.52 

2715  H2  "Chi-Chi 

Taiwan-04" 

1999  "CHY047" 6.2  strike slip 38.59 38.62 169.52 

2753  H1  "Chi-Chi 1999  "CHY102" 6.2  strike slip 39.3 39.32 804.36 

2753  H2  "Chi-Chi 
Taiwan-04" 

1999  "CHY102" 6.2  strike slip 39.3 39.32 804.36 

2955  H1  "Chi-Chi 

Taiwan 05" 

1999  "CHY047" 6.2  Reverse 66.53 71.26 169.52 

2955  H2  "Chi-Chi 
Taiwan-06" 

1999  "CHY047" 6.2  Reverse 66.53 71.26 169.52 

2989  H1  "Chi-Chi 1999  "CHY102" 6.2  Reverse 69.76 74.16 804.36 

2989  H2  "Chi-Chi 

Taiwan-05" 

1999  "CHY102" 6.2  Reverse 69.76 74.16 804.36 

3251  H1  "Chi-Chi 1999  "TTN042" 6.2  Reverse 84.68 85.17 845.34 

718  H1  "Supersti-

tion Hills-
01" 

1987  "Imperial 

Valley Wild-
life Lique-

faction Ar-

ray" 

6.22  strike slip 17.59 17.59 179 

718  H2  "Supersti-
tion Hills-

01" 

1987  "Imperial 
Valley Wild-

life Lique-

faction Ar-
ray" 

6.22  strike slip 17.59 17.59 179 

3282  H1  "Chi-Chi 

Taiwan-06" 

1999  "CHY047" 6.3  Reverse 53.54 54.47 169.52 

3282  H2  "Chi-Chi 
Taiwan-06" 

1999  "CHY047" 6.3  Reverse 53.54 54.47 169.52 

3302  H1  "Chi-Chi 

Taiwan 06" 

1999  "CHY076" 6.3  Reverse 69.66 70.37 169.84 

3302  H2  "Chi-Chi 
Taiwan-06" 

1999  "CHY076" 6.3  Reverse 69.66 70.37 169.84 

326  H1  "Coalinga-

01" 

1983  "Parkfield - 

Cholame 
2WA" 

6.36  Reverse 43.83 44.72 173.02 

326  H2  "Coalinga-

01" 

1983  "Parkfield - 

Cholame 
2WA" 

6.36  Reverse 43.83 44.72 173.02 

334  H2  "Coalinga-

01" 

1983  "Parkfield - 

Fault Zone 

1" 

6.36  Reverse 41.04 41.99 178.27 

8167  H2  "San Sim-

eon CA" 

2003  "Diablo 

Canyon 

Power Plant" 

6.52  Reverse 37.92 37.97 1100 

729  H1  "Supersti-
tion Hills-

02" 

1987  "Imperial 
Valley Wild-

6.54  strike slip 23.85 23.85 179 
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life Lique-
faction Ar-

ray" 

729 H2  "Supersti-

tion Hills-
02" 

1987  "Imperial 

Valley Wild-
life Lique-

faction Ar-

ray" 

6.54  strike slip 23.85 23.85 179 

80  H1  "San Fer-

nando" 

1971  "Pasadena - 

Old Seismo 

Lab" 

6.61  Reverse 21.5 21.5 969.07 

80  H2  "San Fer-
nando" 

1971  "Pasadena - 
Old Seismo 

Lab" 

6.61  Reverse 21.5 21.5 969.07 

3925  H1  "Tottori 2000  "OKYH07" 6.61  strike slip 15.23 15.23 940.2 

3925  H2  "Tottori_ 

Japan" 

2000  "OKYH07" 6.61  strike slip 15.23 15.23 940.2 

3934  H1  "Tottori Ja-

pan" 

2000  "SMN002" 6.61  strike slip 16.6 16.61 138.76 

3934  H2  "Tottori Ja-
pan" 

2000  "SMN002" 6.61  strike slip 16.6 16.61 138.76 

3937  H1  "Tottori Ja-

pan" 

2000  "SMN005" 6.61  strike slip 45.73 45.73 182.3 

3937 H2  "Tottori Ja-
pan" 

2000  "SMN005" 6.61  strike slip 45.73 45.73 182.3 

3954  H1  "Tottori_ 

Japan" 

2000  "SMNH10" 6.61  strike slip 15.58 15.59 967.27 

3962 H1  "Tottori Ja-
pan" 

2000  "TTR005" 6.61  strike slip 45.98 45.98 169.16 

6212  H2  "Tottori Ja-

pan" 

2000  "HRSH08" 6.61  strike slip 143.69 143.69 781.15 

4203  H2  "Niigata Ja-
pan" 

2004  "NIG013" 6.63  Reverse 38 40.59 174.55 

4215  H1  "Niigata Ja-

pan" 

2004  "NIG025" 6.63  Reverse 46.66 48.79 134.5 

4215  H2  "Niigata Ja-
pan" 

2004  "NIG025" 6.63  Reverse 46.66 48.79 134.5 

962  H2  

"Northridge-

01" 

1994  "Carson - 

Water St" 

6.69  Reverse 45.44 49.81 160.58 

1011  H1  

"Northridge-

01" 

1994  "LA - Won-

derland 

Ave" 

6.69  Reverse 15.11 20.29 1222.52 

1011  H2  
"Northridge-

01" 

1994  "LA - Won-
derland 

Ave" 

6.69  Reverse 15.11 20.29 1222.52 

1091  H1  
"Northridge-

01" 

1994  "Vasquez 
Rocks Park" 

6.69  Reverse 23.1 23.64 996.43 

1091  H2  
"Northridge-

01" 

1994  "Vasquez 
Rocks Park" 

6.69  Reverse 23.1 23.64 996.43 

5259  H1  "Chuetsu-

oki Japan" 

2007  "NIG013" 6.8  Reverse 27.92 29.8 174.55 

5259  H2  "Chuetsu-

oki Japan" 

2007  "NIG013" 6.8  Reverse 27.92 29.8 174.55 

5260  H2  "Chuetsu-

oki Japan" 

2007  "NIG014" 6.8  Reverse 21.37 27.09 128.12 

5271  H1  "Chuetsu-

oki Japan" 

2007  "NIG025" 6.8  Reverse 28.3 28.59 134.5 

5271 H2  "Chuetsu-

oki Japan" 

2007  "NIG025" 6.8  Reverse 28.3 28.59 134.5 



 

 

51 

 

5989 H1  "El Mayor-
Cucapah 

Mexico" 

2010  "El Centro 
Array #3" 

7.2  strike slip 40.96 41.29 162.94 

5989 H2  "El Mayor-

Cucapah 
Mexico" 

2010  "El Centro 

Array #3" 

7.2  strike slip 40.96 41.29 162.94 

1147 H1  "Kocaeli 

Turkey" 

1999  "Ambarli" 7.51  strike slip 68.09 69.62 175 

1209 H1  "Chi-Chi 
Taiwan" 

1999  "CHY047" 7.62  Reverse 
Oblique 

24.13 24.13 169.52 

1209 H2  "Chi-Chi 

Taiwan" 

1999  "CHY047" 7.62  Reverse 

Oblique 

24.13 24.13 169.52 

          

 

 


