
  
 
 

 
VERMONT AGENCY OF TRANSPORTATION 

 

VERMONT SMART GROWTH, 
VMT, AND GHG RESEARCH 
PROJECT REPORT 
Technical Report │ July 2024 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 PREPARED FOR: 

  

 
RSG 

55 Railroad Row 
White River Junction, VT 05001 

802.295.4999 
www.rsginc.com 

 

 SUBMITTED BY: 

VHB 
40 IDX Drive 

South Burlington, VT 05403 
802.497.6100 

www.vhb.com 

RSG & VHB 

http://www.rsginc.com/
http://www.vhb.com/


 

VERMONT SMART GROWTH, 
VEHICLE MILES TRAVELED, & 
GREENHOUSE GAS RESEARCH 

 
Karen Sentoff 
Transportation Consultant, VHB 

 
Theodore Mansfield, PhD 
Senior Consultant, RSG 

 
 

 
July 2024 

 
 

Research Project 
Reporting on Project # VTRC022-04 

Final Report 2024-04 



You are free to copy, distribute, display, and perform the work; make derivative works; make commercial use 
of the work under the condition that you give the original author and sponsor(s) credit. For any reuse or 
distribution, you must make clear to others the license terms of this work. Any of these conditions can be 
waived if you get permission from the sponsor(s). Your fair use and other rights are in no way affected by the 
above. 

The information contained in this report was compiled for the use of the Vermont Agency of Transportation. 
Conclusions and recommendations contained herein are based upon the research data obtained and the 
expertise of the researchers and are not necessarily to be construed as Agency policy. This report does not 
constitute a standard, specification, or regulation. The Vermont Agency of Transportation assumes no liability 
for its contents or the use thereof. 

 
This material is based upon work supported by the Federal Highway Administration under SPR VTRC 2022- 
04. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the 
author(s) and do not necessarily reflect the views of the Federal Highway Administration. 



TECHNICAL DOCUMENTATION PAGE 
 

1. Report No. 
2024-04 

2. Government Accession No. 3. Recipient’s Catalog No. 

4. Title and Subtitle 
Vermont Smart Growth, Vehicle Miles Traveled, and Greenhouse 
Gas Research 

5. Report Date 
August 12, 2024 
6. Performing Organization Code 

7. Author(s) 
Sentoff, Karen (VHB) 
Mansfield, Theodore (RSG) 

8. Performing Organization Report 
No. 

9. Performing Organization Name and Address 10. Work Unit No. 

VHB 
40 IDX Drive 
South Burlington, VT 05403 

RSG 
55 Railroad Row 
White River Junction, VT 05001 

11. Contract or Grant No. 
VTRC022-04 

12. Sponsoring Agency Name and Address 
Vermont Agency of Transportation (SPR) 
Research Section 
One National Life Drive 
Montpelier, VT 05633 

13. Type of Report and Period 
Covered 
Final Report 2022-2024 

14. Sponsoring Agency Code 

15. Supplementary Notes 
Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. 
https://vtrans.vermont.gov/planning/research/projects/22-4 

https://vtrans.vermont.gov/planning/research/projects/22-4


16. Abstract 

The Global Warming Solutions Act (GWSA) set targets for Vermont to reduce greenhouse gas (GHG) emissions to 
80% below 1990 levels by 2050. Recognizing that transportation accounts for the largest share of the State’s 
total GHG emissions, the Climate Action Plan identified reduction in vehicle miles traveled (VMT) as a key 
pathway to meet targets and acknowledged the need to quantify the effect of smart growth strategies on VMT 
and GHG reduction in the Vermont context. This project explored the hypothesis that compact, mixed use 
development patterns generate fewer VMT and GHG emissions per person than more dispersed or rural 
settlement patterns. A model was developed relating built environment measures in Vermont communities to 
weekly per capita VMT estimates by leveraging passively collected, location-based services data. Several future 
scenarios were quantified to demonstrate the degree to which smart growth strategies can reduce VMT to meet 
transportation related GHG emission reduction targets and quantify the co-benefits of smart growth strategies 
beyond GHG emission reductions. 

Focusing future growth in areas with low VMT and emulating prototype smart growth communities were most 
effective in reducing weekly per capita VMT overall, reducing VMT by an estimated 10 miles per person per week 
compared to more dispersed growth scenarios. Smart growth strategies were demonstrated to contribute to 
over 15% of the annual GHG reduction needed to achieve the 2050 GWSA targets. Conversely, dispersed 
settlement patterns produced an increase in emissions of up to 20% of the annual target, working against other 
mechanisms to drive down annual GHG emissions. Future scenarios demonstrated the co-benefits of smart 
growth strategies on safety with 1 avoided traffic death and over 30 avoided traffic injuries per year; health with 
reduced physical inactivity mortality saving nearly 4 lives annually; and maintenance with reduced annual 
maintenance costs by over $1.5 million. Case study communities offered further insights on VMT and GHG 
reductions possible through implementation of smart growth strategies. Specifically, the scenario results for case 
study communities highlighted the need for jobs in proximity to denser, mixed land uses to achieve targeted 
VMT and GHG reductions; the opportunity to enhance the existing patterns in Vermont of denser centers 
surrounded by more rural areas through context sensitive modifications to density, land use mix, infrastructure, 
and proximity to jobs; and, the influence of regional neighbors on VMT where condensed movement patterns 
within town centers are often complemented by more expansive travel patterns to adjacent communities. 

17. Key Words 
Smart Growth, Vehicle Miles Traveled, Land Use Planning, 
Greenhouse Gas Emissions 

18. Distribution Statement 
No restrictions. This document is available 
through the National Technical Information 
Service, Springfield, VA 22161. 

19. Security Classif. (of this report) 
Unclassified 

20. Security Classif. (of this page) 
Unclassified 

21. No. of Pages 
104 

22. Price 



 



 
CONTENTS 

Vermont Agency of Transportation 
VERMONT SMART GROWTH, VMT, AND GHG RESEARCH PROJECT 
REPORT 

 

 

 
 

EXECUTIVE SUMMARY .......................................................................... 1 
1.0 INTRODUCTION ................................................................................. 5 
2.0 BUILT ENVIRONMENT MEASURES ................................................. 7 

2.1 LITERATURE REVIEW ............................................................................ 7 

OVERVIEW ............................................................................................. 7 

THE FIVE DS .......................................................................................... 8 

2.2 VMT AND THE FIVE DS .......................................................................... 8 

QUANTIFYING THE EFFECTS OF THE FIVE DS ON VMT ................... 9 

2.3 CROSS-CUTTING THEMES .................................................................. 13 
THEME 1: MEASUREMENT MATTERS ............................................... 13 

THEME 2: UNDERSTANDING THE RURAL CONTEXT ....................... 13 

THEME 3: THE BENEFITS OF VMT REDUCTIONS ............................ 14 

2.4 LIMITATIONS ......................................................................................... 16 

2.5 UNDERSTANDING THE VERMONT CONTEXT ................................... 16 

2.6 SPATIAL DATABASE OF BUILT ENVIRONMENT MEASURES ........... 18 

3.0 ESTIMATING BASELINE VMT......................................................... 19 
3.1 LBS DATA PROCESSING ..................................................................... 19 

PREPARING STUDY GEOMETRY ....................................................... 19 

DATA FILTERING ................................................................................. 22 

DATA PROCESSING ............................................................................ 22 

3.2 CUSTOM POST-PROCESSING ............................................................ 23 

DEVELOPING DEVICE QUALITY TIERS ............................................. 24 

RESAMPLING DEVICES ...................................................................... 26 

MODE CHOICE ESTIMATION .............................................................. 27 

 i 



3.3 DEVICE WEIGHTING ............................................................................ 28 

3.4 RESULTS ............................................................................................... 29 

VMT DATASET SUMMARIES............................................................... 29 

DATA VALIDATION .............................................................................. 32 

4.0 DEVELOPING A VMT MODEL FOR VERMONT ............................. 34 
4.1 DATA PREPARATION ........................................................................... 34 

4.2 VARIABLE SELECTION ......................................................................... 35 

INITIAL STEPWISE REGRESSION ...................................................... 36 

BUFFER VARIABLE SELECTION ........................................................ 36 
FINAL STEPWISE REGRESSION ........................................................ 37 

4.3 REGRESSION MODEL .......................................................................... 37 
4.4 MODEL VALIDATION AND APPLICATION ............................................ 38 

5.0 VERMONT FUTURE GROWTH SCENARIOS ................................. 41 
5.1 SCENARIO NARRATIVES ..................................................................... 41 

5.2 DEVELOPING FUTURE SCENARIOS ................................................... 41 

GROWTH PROJECTIONS .................................................................... 42 

PROTOTYPE SMART GROWTH NEIGHBORHOODS......................... 43 
ALLOCATION RULES ........................................................................... 43 

SCENARIO RULESETS ........................................................................ 44 
5.3 CALCULATING SCENARIO BENEFITS................................................. 46 

GHG EMISSION REDUCTIONS ........................................................... 46 

SAFETY CO-BENEFIT .......................................................................... 47 

HEALTH CO-BENEFIT .......................................................................... 47 

MAINTENANCE CO-BENEFIT .............................................................. 49 

AVOIDED INFRASTRUCTURE CO-BENEFIT ...................................... 49 
5.4 RESULTS ............................................................................................... 50 

6.0 CASE STUDIES ................................................................................ 56 
6.1 RUTLAND CITY ..................................................................................... 58 

6.2 SPRINGFIELD ........................................................................................ 61 

6.3 MORRISVILLE ....................................................................................... 64 

6.4 KEY TAKEAWAYS ................................................................................. 68 

7.0 CONCLUSIONS ................................................................................ 69 
SCENARIO EVALUATIONS .................................................................. 69 

CASE STUDY EVALUATIONS .............................................................. 69 

APPENDIX A. ANNOTATED BIBLIOGRAPHY ..................................... 71 
AHLFEDT AND PIETROSTEFANI, 2017 .............................................. 71 
BURCHELL AND MUKHERJI, 2003 ...................................................... 71 

CAPCOA, 2021 ..................................................................................... 72 

DE DUREN AND COMPEAN, 2015 ...................................................... 74 

EPA SMART LOCATION DATABASE .................................................. 74 

EWING AND CERVERO, 2001 ............................................................. 75 

EWING AND CERVERO, 2010 ............................................................. 75 

 ii 



EWING AND CERVERO, 2017 ............................................................. 76 

EWING ET AL, 2019 ............................................................................. 76 

EWING ET AL, 2014 ............................................................................. 77 

GANSON AND MILLER, 2015 .............................................................. 77 
HOUSTON, 2014 .................................................................................. 77 

IHLANFEDLT, 2020 ............................................................................... 78 

KNUIMAN ET AL, 2014 ......................................................................... 78 

LEE, 2022.............................................................................................. 79 

LITMAN, 2022 ....................................................................................... 79 
MANSFIELD, EHRLICH, ZMUD, AND LEE, 2022 ................................. 80 

MATTSON, 2021 ................................................................................... 80 
OGRA, 2014 .......................................................................................... 81 

STANTEC, 2013.................................................................................... 81 

STEVENS, 2016 .................................................................................... 81 

WEEKS, 2009 ....................................................................................... 82 

APPENDIX B. BUILT ENVIRONMENT DATABASE ............................. 83 
SOCIO-ECONOMIC DATA.................................................................... 83 

BUILT ENVIRONMENT DATA .............................................................. 84 

APPENDIX C. SCENARIO RULESETS ................................................. 88 
SCENARIO RULESETS ........................................................................ 88 

 
LIST OF FIGURES 

FIGURE 1. VMT PER CAPITA AND POPULATION DENSITY ......................................... 10 
FIGURE 2. URBAN DENSITY VERSUS ROADWAY SUPPLY ACROSS 

REGIONS IN THE UNITED STATES ........................................................................ 15 
FIGURE 3. RESIDENTIAL SERVICE COSTS INCREASE AS DENSITY 

DECREASES ........................................................................................................... 16 
FIGURE 4. ANALYSIS OF OCTOBER 2019 SAFEGRAPH DATA IN VERMONT ............ 17 
FIGURE 5. ANNUAL VMT BY LOCATION, FROM VERMONT 2009 NHTS ..................... 18 
FIGURE 6. DATA PROCESSING WORKFLOW ............................................................... 19 
FIGURE 7. COMPILED LAND-USE DATASET IN BURLINGTON, VT ............................. 20 
FIGURE 8. POST-PROCESSING WORKFLOW ............................................................... 24 
FIGURE 9. DISTRIBUTION OF DEVICE HOME LOCATIONS (LEFT) AND 

SAMPLING RATE (RIGHT) ACROSS VERMONT .................................................... 30 
FIGURE 10. DISTRIBUTION OF TRIP ORIGINS (LEFT) AND MEDIAN TRIP 

DISTANCES (LEFT) ................................................................................................. 31 
FIGURE 11. DISTRIBUTION OF NON-MOTORIZED MODE SHARE ............................... 31 
FIGURE 12. TIER 1 TRIP TIME-OF-DAY PLOTS BY TRIP PURPOSE FOR 

WEEKDAY (LEFT) AND WEEKEND (RIGHT) .......................................................... 32 
FIGURE 13. TIER 2/3 TRIP TIME-OF-DAY PLOTS BY TRIP PURPOSE FOR 

WEEKDAY (LEFT) AND WEEKEND (RIGHT) .......................................................... 32 
FIGURE 14. COMPARISON OF TRACT-LEVEL VMT DERIVED FROM LBS 

DATA (HORIZONTAL AXIS) AND LATCH ESTIMATES (VERTICAL AXIS) ............ 33 
FIGURE 15. IMPACT OF BUFFER SIZE ON DENSITY VARIABLES ............................... 35 
FIGURE 16. VMT MODEL PREDICTIONS VERSUS LBS OBSERVATIONS 

(LEFT) AND LATCH ESTIMATES (RIGHT) .............................................................. 39 
FIGURE 17. VERMONT RESIDENTS ALLOCATED TO CELLS (LEFT) AND 

VMT MODEL PREDICTIONS (RIGHT) ..................................................................... 40 
FIGURE 18. RELATIONSHIP BETWEEN POPULATION DENSITY AND 

ROADWAY MILES PER CAPITA ............................................................................. 50 
FIGURE 19. WEEKLY PER CAPITA VMT ACROSS ALL SCENARIOS .......................... 51 
FIGURE 20. RUTLAND’S CITY CENTER .................................................................................. 58 
FIGURE 21. RUTLAND ACTIVITY SPACE ...................................................................... 59 
FIGURE 22. COMPARISON OF DISPERSED AND CONCENTRATED 

GROWTH SCENARIOS FOR RUTLAND ................................................................. 60 
FIGURE 23. ACTIVITY SPACE FOR SPRINGFIELD ....................................................... 61 

 
 

 iii 



FIGURE 24. DOWNTOWN SPRINGFIELD ....................................................................... 62 
FIGURE 25. COMPARISON OF BASELINE AND CONCENTRATED GROWTH 

BALANCED LAND USE SCENARIOS FOR SPRINGFIELD .................................... 63 
FIGURE 27. DOWNTOWN MORRISVILLE....................................................................... 64 
FIGURE 28. MORRISVILLE ACTIVITY SPACE ............................................................... 65 
FIGURE 29. COMPARISON OF DISPERSED AND CONCENTRATED 

GROWTH, CONCENTRATED JOBS SCENARIOS FOR MORRISVILLE ................. 67 

LIST OF TABLES 
TABLE 1. VMT & 5 D VARIABLE ELASTICITIES .............................................................. 9 
TABLE 2. WALK MODE CHOICE AND THE 5DS ............................................................ 11 
TABLE 3. BIKE MODE CHOICE AND THE 5DS .............................................................. 12 
TABLE 4. REGRESSION ANALYSIS OF VMT, SMART LOCATION 

DATABASE VARIABLES ........................................................................................ 12 
TABLE 5. PER CAPITA IMPERVIOUS SURFACE AREA, SMART GROWTH 

VS SPRAWL CONDITIONS ..................................................................................... 15 
TABLE 6. AGGREGATION OF E911 LAND-USE CATEGORIES .................................... 21 
TABLE 7. PROCESSED DEVICE COUNTS, BY KMEANS-DERIVED GROUP ................ 25 
TABLE 8. DEVICES WITH AT LEAST ONE QUALIFYING DEVICE-WEEK 

AFTER RESAMPLING ............................................................................................. 27 
TABLE 9. NONMOTORIZED REGRESSION MODEL RESULTS ..................................... 28 
TABLE 10. TRIP SUMMARY BY MODE .......................................................................... 28 
TABLE 11. DEVICE AND TRIP COUNTS IN RESAMPLED DATASET ............................ 30 
TABLE 12. RELATIONSHIP OF BUILT ENVIRONMENT VARIABLES AND OF 

LBS-DERIVED VMT ................................................................................................. 34 
TABLE 13. EFFECT OF BUFFER SIZE ON VMT MODEL PERFORMANCE. 

TOP-TWO BUFFER VARIABLES IN EACH CATEGORY ARE BOLDED 
AND SHADED .......................................................................................................... 37 

TABLE 14. VMT MODEL RESULTS ................................................................................ 38 
TABLE 15. VMT MODEL MARGINAL EFFECTS ............................................................. 38 
TABLE 16. COMPARISON OF MODEL PREDICTIONS TO LATCH 

ESTIMATES, BY LATCH VMT QUINTILE ................................................................ 39 
TABLE 17. LEAP GROWTH PROJECTIONS .................................................................. 42 
TABLE 18. COUNTY GROUPINGS FOR IDENTIFYING PROTOTYPE SMART 

GROWTH NEIGHBORHOODS ................................................................................. 43 
TABLE 19: CHITTENDEN COUNTY LONG RANGE PLAN - MOVES OUTPUTS ............ 47 
TABLE 20: VERMONT CRASH RATES ........................................................................... 47 
TABLE 21. VERMONT DEATH RATES ........................................................................... 48 
TABLE 22. VTRANS MAINTENANCE COSTS PER MILE TRAVELED, FROM 

THE 2019 WEIGHT-BASED ANNUAL REGISTRATION REPORT .......................... 49 
TABLE 23. SCENARIO BENEFITS, 2035 ........................................................................ 54 
TABLE 24. SCENARIO BENEFITS, 2050 ........................................................................ 55 
TABLE 25. COUNTY TYPOLOGIES AND PROTOTYPE COMMUNITIES........................ 56 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 iv 



EXECUTIVE SUMMARY 
 

The Global Warming Solutions Act or Act 153, enacted by the Vermont Legislature in 2020, set 
targets for Vermont to reduce greenhouse gas (GHG) emissions to 26% below 2005 levels by 
2025, 40% below 1990 levels by 2030, and 80% below 1990 levels by 2050. Recognizing that 
transportation accounts for the largest share of the State’s total GHG emissions at 39.7%, the 
Climate Action Plan identifies reduction in vehicle miles traveled (VMT) as a key pathway for 
meeting GHG reduction. The Climate Action Plan further identified a high priority action to 
quantify the effect of smart growth strategies on VMT and GHG reduction in the Vermont 
context. 

Delivering on this high priority action in the Climate Action Plan, this project explored the 
hypothesis that compact, mixed use development patterns generate fewer VMT and GHG 
emissions per person than more dispersed or rural settlement patterns. Further, this study 
explored built environment relationships with VMT across Vermont, inclusive of many rural 
areas across the state, which will help to fill a critical gap in the literature. Current and future 
patterns of built environment development, land use, population growth, and travel behavior 
were quantified in several scenarios to fulfill two primary focal points of the research: 

• Demonstrate the degree to which smart growth strategies in the Vermont context can 
reduce VMT to meet transportation related GHG emission reduction targets; and, 

• Quantify the co-benefits of smart growth strategies beyond GHG emission reductions to 
include health benefits of increased active and multimodal travel, safety benefits of 
reduced VMT, reduced maintenance associated with fewer vehicles and possibly fewer 
lane miles, and increased economic activity located in downtowns and community 
centers. 

The consultant team of VHB and RSG worked in close collaboration with a Champion from the 
Vermont Agency of Transportation’s Policy, Planning and Research Bureau, as well as a 
Technical Advisory Committee (TAC) composed of representatives from: 

• Agency of Transportation | Environmental Policy & Sustainability 

• Agency of Transportation | Highway Division 

• Agency of Transportation | Policy, Planning and Intermodal Development Division 

• Agency of Digital Services | Vermont Center for Geographic Information 

• Agency of Commerce & Community Development | Community Planning & Revitalization 

• Agency of Natural Resources | Climate Action Office 

• Vermont Natural Resources Council 

• Conservation Law Foundation 

The study’s TAC provided integral feedback at key decision points regarding the study scope, 
data exploration, findings, and applications discussed in greater detail below. 
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Passively collected, location-based services (LBS) data were leveraged to develop weekly per 
capita VMT estimates for the state. Location based data were gathered for any device seen 
within Vermont's boundary in each season of 2019. Devices were filtered to remove sporadic or 
anomalous behavior. Data processing entailed enriching the device data to identify device 
locations using transportation network, land use, and point of interest features. For each 
device's records, stops and anchor locations as well as visits or dwell times were determined. 
Anchor locations (e.g., home, work) were classified and trips between locations were identified 
and assigned trip attributes. Post-processing entailed assigning quality tiers and removing 
suspected commercial trucks and junk devices. All non-Vermont residents were also removed. 
The data were resampled to extract the most representative week for each device in each 
season. Based on the characteristics of each trip, mode was assigned categorizing every trip 
into motorized, non-motorized, flights, and ferry trips. A two-stage weighting was applied to 
scale the sample of devices to represent weekly VMT by all Vermont residents. A demographic 
expansion factor was used to scale the sample based on how many people are represented by 
a given device. An adjusted VMT factor was used to account for missing VMT relative to the 
Local Area Transportation Characteristics for Households estimates. This procedure resulted in 
LBS-derived VMT estimates based on a data set containing 750,000 trips from nearly 30,000 
devices seen throughout 2019. 

Informed by the body of research that explores the relationship between travel behavior and the 
built environment, a database of built environment measures was assembled. The built 
environment measures focused on representing the ‘five D’ variables that influence travel 
behavior, including density, diversity of land use, design, destination accessibility, and distance 
to transit. VMT estimates and built environment measures were resolved to a hex-grid spatial 
database across the state of Vermont to develop a model that relates the built environment 
measures to the weekly per capita VMT estimates. 

Future growth scenarios were developed to represent a range of possible growth and built 
environment changes. The scenarios explored a few common themes – dispersed growth 
patterns versus concentrated growth patterns, concentrated growth prioritized to places with 
density versus places with low VMT, and employment growth in balance with concentrated 
residential growth versus allocated to places near established cores or lower density areas. The 
model was applied to these scenarios to predict how VMT and other related benefits might 
change under different future growth scenarios. The scenarios forecast growth to 2035 and 
2050 time horizons, included both a low and high growth scenarios, and derived various growth 
patterns as follows: 

• Dispersed growth: In this scenario, low-density residential development occurs across 
all developable land, ignoring existing community designations and wastewater service 
areas. From a smart growth perspective, this represents a “worst case” scenario. 

• Concentrated growth, concentrated jobs: In this scenario, future residential and 
employment growth is concentrated in already dense neighborhoods. Growth “overflows” 
to less dense neighborhoods when density exceeds a maximum density threshold. 



• Concentrated growth, dispersed jobs: Like above, future residential growth is 
concentrated in already dense areas of the state. However, employment growth is 
allocated to lower density areas (i.e., greenfield development of employment centers). 

• Concentrated growth, balanced land use: In this scenario, future development is 
focused on copying places in Vermont that exemplify smart growth principles today. 
Growth is allocated so that future development mirrors the lowest VMT neighborhoods in 
Vermont currently by leveraging prototype smart growth neighborhood attributes. 

• Concentrated growth, unbalanced land use: This scenario allocates residential growth 
as described above. Employment growth, on the other hand, occurs in locations near 
established cores, but not in locations with high population density. 

The resulting VMT estimates were then used to estimate benefits associated with each 
scenario. In addition to changes in GHG emissions—the primary benefit explored in this study— 
co-benefits were estimated to quantify the following: 

• Safety: Changes in fatal and injury crashes, for motorized and non-motorized travel 
modes; 

• Health: Impacts associated with changes in physical activity from nonmotorized travel; 

• Cost Reductions: 

○ Changes in infrastructure maintenance costs associated with VMT; and, 

○ Potential reductions on infrastructure construction costs associated with more 
compact development patterns. 

Based on the analysis of future scenarios, concentrated growth reduced VMT by nearly 10 miles 
per person per week compared to dispersed patterns, demonstrating the opportunity for smart 
growth strategies in Vermont and the impact they might have on travel patterns. Of the 
scenarios evaluated, focusing growth in areas with low VMT and emulating prototype smart 
growth communities with low VMT were most effective in reducing weekly per capita VMT 
overall. The GHG emission reduction potential of smart growth, based on scenario 
evaluations, could amount to over 15% of the annual reduction needed to achieve the 
2050 Global Warming Solutions Act targets. Conversely, dispersed settlement patterns can 
produce an increase in emissions of up to 20% of the annual target, working against other 
mechanisms to drive down annual GHG emissions. Beyond VMT and GHG emission 
reductions, the most effective future scenarios (i.e., emulating the lowest VMT communities) 
demonstrated the benefit of smart growth strategies on outcomes associated with the 
transportation system in Vermont, including: 

• safety outcomes with 1 avoided traffic death and over 30 avoided traffic injuries per 
year; 

• health outcomes with reduced physical inactivity mortality by saving nearly 4 lives 
annually; and, 

• maintenance outcomes with reduced annual maintenance costs by over $1.5 million. 
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There are communities within Vermont where the built environment supports more condensed 
travel patterns. There are also locations in Vermont that seem to produce more VMT and GHG 
emissions on average even though characteristics of their built environment reflect patterns of 
smart growth. Zooming in on a few communities through the lens of these scenarios illuminated 
some key takeaways for contextualizing the results of this study, including: 

• Denser, mixed land uses require job proximity to achieve targeted VMT and GHG 
reductions, necessitating holistic planning to co-locate jobs relative to compact centers 
and livable neighborhoods to strike a jobs-housing balance; 

• Vermont’s historical settlement patterns and predominant landscape of denser 
centers surrounded by more rural areas lends itself inherently to smart growth 
strategies where the state’s “good bones” can be enhanced through thoughtful, context 
sensitive modifications to density, land use mix, proximity to jobs, and civil infrastructure; 

• Regional neighbors influence VMT and travel patterns where condensed movement 
patterns within town centers may serve some needs complemented by more expansive 
travel patterns to adjacent communities to serve other needs. 

These communities offer insights on the potential scope and scale of VMT and GHG reductions 
that are possible through implementation of smart growth strategies. The work at the local and 
regional level to encourage and operationalize smart growth principles can have a statewide 
impact, contributing over 15% of the year-over-year GHG reduction targets required to meet the 
goals set forth in the Global Warming Solutions Act. 



1.0 INTRODUCTION 
 

The Global Warming Solutions Act or Act 153, enacted by the Vermont Legislature in 2020, set 
targets for Vermont to reduce greenhouse gas (GHG) emissions to 26% below 2005 levels by 
2025, 40% below 1990 levels by 2030, and 80% below 1990 levels by 2050. Recognizing that 
transportation accounts for the largest share of the State’s total GHG emissions at 39.7%, the 
Climate Action Plan identifies reduction in vehicle miles traveled (VMT) as a key pathway for 
meeting GHG reduction. The Climate Action Plan further identified a high priority action to 
quantify the effect of smart growth strategies on VMT and GHG reduction in the Vermont 
context. 

This project evaluates how future patterns of land use and built environment development for 
the state of Vermont may influence transportation GHG emissions. The project explores the 
overarching hypothesis that compact, mixed use development patterns intrinsically generate 
less VMT and GHG emissions per person than more dispersed or rural settlement patterns. In 
such an exploration, the two primary focal points of the research were to: 

1. Demonstrate the degree to which smart growth strategies, particularly in the Vermont 
context, can reduce VMT to meet transportation related GHG emission reduction 
targets as promulgated in the Vermont Pathways Analysis Report (“Pathways”). 

2. Quantify the co-benefits of smart growth strategies beyond GHG emission reductions. 
Such benefits include health benefits of increased active and multimodal travel, safety 
benefits for reduced VMT, reduced maintenance associated with fewer vehicles and 
possibly fewer lane miles, and increased economic activity located in downtowns and 
community centers. 

To achieve these research objectives, a project was funded through the VTrans Research 
Program assembling a team including a project champion from VTrans Policy & Planning and 
researchers from RSG and VHB. In order to guide the research project and support key 
decision making, a Technical Advisory Committee (TAC) was assembled with representation 
from the Agency of Transportation’s Highway Division, Environmental Policy & Sustainability 
Section, Policy Planning and Intermodal Development Division, Agency of Digital Services’ 
Vermont Center for Geographic Information, Agency of Commerce & Community 
Development’s Community Planning & Revitalization Section, Agency of Natural Resources’ 
Climate Action Office, Vermont Natural Resources Council, and Conservation Law Foundation. 
With this team and advisory assembled, the project encompassed five phases of work: 

• A review of built environment measures and travel behavior. Described in Chapter 2, 
this foundational step reviewed academic literature exploring how the built environment 
shapes travel behavior. Findings from this review informed which built environment 
measures were to be included in a spatial database developed for the state of Vermont 
and used in the other phases of this project. 

• Developing estimates of baseline per capita VMT for Vermont residents. The next 
phase of work, described in Chapter 3, leveraged passively collected location data to 
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develop estimates of typical weekly VMT based on a sample of approximately 30,000 
Vermonters. 

• Developing a Vermont-specific VMT model. The third phase of work combined the 
spatial database developed during the first phase with VMT estimates from the second 
phase to develop a regression model that can be used to estimate or predict how per 
capita VMT changes when built environment measure(s) in the spatial database change. 
This work is described in Chapter 4. 

• Estimating VMT for future development scenarios. The fourth phase of work, 
described in Chapter 5, developed future growth scenarios in conjunction with the 
project’s Technical Advisory Committee (TAC) for how the built environment might grow 
and change. The model developed in the third phase was applied to predict how these 
different scenarios would impact VMT and other benefits associated with reduced VMT. 
Potential benefits related to changes in VMT included greenhouse gas (GHG) emission 
reductions, public health and traffic safety benefits, and cost savings for VTrans. A 
dashboard tool was developed to support decisionmakers by providing a means to 
interact with scenario parameters and model outcomes in a GIS environment at the 
neighborhood scale and summarize the future scenario outcomes at the statewide scale. 

• Contextualizing future scenarios with case studies. Finally, case study narratives 
were developed for several Vermont communities. Illustrative examples from different 
Vermont communities across the spectrum of outcomes for future scenarios offers a 
roadmap for using the dashboard tool to evaluate localized and regional smart growth 
initiatives. The case studies and final takeaways for the study are described in Chapters 
6 and 7, respectively. 



2.0 BUILT ENVIRONMENT MEASURES 
 

The first phase of this project reviewed existing literature on how the characteristics of the built 
environment impact travel behavior. This work informed the development of a spatial database 
of built environment measures comprised of the characteristics most relevant to understanding 
this relationship between the built environment and travel behavior in Vermont. A foundational 
step in understanding how the built environment shapes travel behavior is developing measures 
that describe characteristics of the built environment. This chapter summarizes this literature 
with three specific aims: 

• Inform the selection of built environment measures included in the spatial database. 

• Provide guidance on data sources and methods used to develop such measures. 

• Identify limitations and considerations that should be made in exploring the relationship 
between the built environment and travel behavior in the Vermont context. 

Section 2.1 presents a high-level overview of the literature review and Section 2.2 digs deeper 
into how specific built environment measures shape travel behaviors. Section 2.3 introduces 
three cross-cutting themes and Section 2.4 summarizes limitations of the existing literature. 
Finally, Section 2.5 discusses issues specific to the Vermont context and Section 2.6 describes 
the database of built environment measures. An annotated bibliography is provided in Appendix 
A for reference. 

2.1 LITERATURE REVIEW 
The literature investigating the relationship between the built environment and travel behavior is 
large and complex. Several recent review papers have succinctly summarized this expansive 
body of work. Rather than conducting our own independent review of the literature, we instead 
began this review by identifying these review papers. We then conducted a brief supplemental 
review using the snowball method (i.e., identifying more recent papers that cited these keystone 
reviews) and targeted searches with keywords to uncover work in the rural context. Identifying 
cross-cutting themes, we performed a more targeted review of studies exploring the relationship 
between VMT and the built environment in the context of these themes. 

Overview 
The keystone papers used in our snowball sampling approach—two recently authored by Reid 
Ewing and others—explore the relationships between the built environment and travel behavior 
using the ‘five D’ variables to frame their findings.1 These variables seek to independently 
characterize aspects of the built environment that influence travel choices. Each of these five 
elements typically represent built environment land use attributes that may or may not be 
intentionally designed to impact travel patterns: 

 
 

 
1 These two keystone papers are Ewing and Cervero 2017 and Ewing et al. 2019 

 
 

7 



The Five Ds 
• Density: The number or concentration of land use opportunities per square mile, such as 

dwellings, households, people, and jobs. 

• Diversity: The number and mix of different land uses within a certain area, which is often 
measured by land use mix and jobs-housing balance. 

• Design: Physical features of the built environment that impact travel patterns, such as 
sidewalks, cycle paths, and street design. Metrics that are used to quantify design 
include intersection/street density and number of 4-way intersections. 

• Destination Accessibility: When destinations are more accessible, people may be able to 
travel shorter distances and/or use non-automobile modes to reach goods and services. 

• Distance to Transit: The proximity to transit service. 

Additional dimensions (Ds) have been proposed to supplement the original five Ds research. 
Travel demand management is a sixth D that is sometimes included in this research and 
consists of policy interventions or strategies which are explicitly designed to impact travel 
demand.2 Demand management is a broad category that may or may not include land use 
elements and includes strategies such as parking pricing, transit incentives, and technology. 
This review focuses on the traditional “five Ds” described above. 

2.2 VMT AND THE FIVE DS 
Within the five Ds framework, certain dimensions may impact different travel choices in different 
ways. For example, physical design and land use diversity may be more influential on mode 
choice decisions whereas destination accessibility may be more influential on trip distance. 
Importantly, VMT is influenced by many travel decisions, including mode choice, deciding 
when/how often to travel, and how much distance needs to be travelled to reach destinations. 
This complexity is well-described in Ewing et al: 

“…destinations that are closer, as a result of higher development density or greater land 
use diversity may be easier to walk or bike to than drive to. Also, origins that are closer 
to high quality transit, and hence to destinations regionally via transit, render transit a 
viable alternative to the automobile. People living in such environments will tend to own 
fewer vehicles. Also, a household’s vehicle fleet can be utilized more efficiently when 
destinations are close by, as trip chaining and carpooling become more practical.3 

Despite this complexity, the research consistently finds that households that live in dense, 
mixed-use, and transit served areas tend to drive less compared to households in areas that do 
not have these characteristics. 

 
 
 
 
 

2 Ogra, 2014 
3 Ewing et al. 2019 



Quantifying the Effects of the Five Ds on VMT 
A prevailing approach in the literature is to develop elasticities describing how changes in the 
five Ds can be expected to change VMT. Elasticity refers to the relative change in an outcome 
variable (VMT) given a change in an exploratory variable (one of the five Ds). For example, the 
elasticity of a VMT in relation to the density of bicycle lanes would describe the expected 
percent change in VMT given a 1% change in the density of bicycle lanes. Ewing and Cervero 
presented elasticities for the five Ds using different methods and assert that the elasticities in 
the second column of the table below are the most reliable estimates available (Table 1). 

TABLE 1. VMT & 5 D VARIABLE ELASTICITIES4 
 

 
 

WEIGHTED 
AVERAGE 

ELASTICITIES 
a 

 
 

WEIGHTED 
AVERAGE 

ELASTICITIES 
b 

 
META- 

REGRESSION 
ELASTICITIES 
ACCOUNTING 

FOR SELF- 
SELECTION b 

META- 
REGRESSION 
ELASTICITIES 
ACCOUNTING 

FOR SELF- 
SELECTION 

AND 
REPORTING 

BIAS b 

Density Household/population 
density -0.04 -0.15 -0.22 -0.22 

 Job density 0.00 -0.01  -0.07   -0.07  

Diversity Land use mix (entropy 
index) -0.09 -0.07 +0.03 +0.11 

 Jobs-housing balance -0.02 -0.03  NA   0.00  

Design Intersection/street 
density -0.12 -0.16 NA -0.14 

 % 4-way intersections -0.12 -0.06  NA   -0.06  
Destination 
Accessibility 

Job accessibility by 
auto -0.20 -0.25 NA -0.20 

 Job accessibility by 
transit -0.05 -0.07 NA 0.00 

 Distance to downtown -0.22 +0.01  -0.29   -0.63  
Distance to 

Transit 
Distance to nearest 

transit stop -0.05 -0.06 NA -0.05 
a Ewing & Cervero sample 
b Stevens sample 

    

 
 

… increases in one built environment variable alone 
may not yield expected reductions in VMT without 
other variables supporting lower VMT levels—for 
example, increases in population density absent 
diverse land uses and access to transit may not result 
in VMT reductions below what would otherwise be 
expected. This highlights a possible “sum greater than 
the individual parts” characteristic of the five Ds. 

 

 
 
 
 
 

4 Adapted from Ewing & Cervero 2017 
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Across different dimensions of the built environment, these elasticities vary dramatically. Within 
the “Weighted average elasticities: Stevens sample” estimates, for example, job density seems 
to have a minor effect—a 0.01% reduction in VMT given a 1% increase in job density—while job 
accessibility by auto has an effect size roughly 25 times higher (Table 1). Applying other 
methods, however, the impact of job density is larger while the impact of auto job accessibility is 
lower (column 4 of Table 1). 

The variability across studies and the five D measures themselves reflect the nuances in the 
relationship between the built environment and travel behavior, as described previously by 
Ewing. While the five Ds are typically treated as (somewhat) independent of one another in the 
literature, these variables are often correlated. Further, increases in one built environment 
variable alone may not yield expected reductions in VMT without other variables supporting 
lower VMT levels—for example, increases in population density absent diverse land uses and 
access to transit may not result in VMT reductions below what would otherwise be expected. 
This highlights a possible “sum greater than the individual parts” characteristic of the five Ds. 
While the literature has sought to isolate the effects of each, the effects of these variables in 
VMT may be interrelated. Interestingly, while plotting a single built environment measure alone 
may reveal a relationship with VMT—as demonstrated in work by Litman (Figure 1)—accounting 
for variables across different dimensions often strengthens such associations. 

FIGURE 1. VMT PER CAPITA AND POPULATION DENSITY5 
 

 
To better understand the nuances of these relationships, a recent study sought to isolate the 
effects of the five Ds on specific travel choices to support the development of travel model 

 
5 Adapted from Litman 2022 



enhancement in the Salt Lake City, Utah region.6 This study reviewed existing work in the 
context of elements of the travel demand model, such as walk and bike mode choice models 
(Table 2 and Table 3, respectively). Walk mode choice tends to have a positive relationship with 
higher population, job density, higher commercial floor area ratio, more diverse land use, and 
short distance to commercial destinations. 

TABLE 2. WALK MODE CHOICE AND THE 5DS7 
 

BUILT ENVIRONMENT MEASURES 

STUDY METHOD Density Diversity Design Destination 
accessibility 

Hamre & Buehler 
(2014) MNL Population 

density (+) - - - 

 
Reily & Landis 

(2002) 

 
MNL 

 
Population 
density (+) 

Distance to 
closest 

commercial 
use (-) 

 
- 

 
- 

Frank et al. 
(2008) NL Retail floor 

area ratio (+) 
Land use mix 

(+) 
Intersection density 

(+) - 

Ferrell et al. 
(2015) MNL Population 

density (+) - 4-way intersection 
density (+) - 

Rajamani et al. 
(2003) MNL - Land use mix 

(+) 
% Cul-de-sac 

streets (-) - 

Mitra (2011) BNL - 
Jobs-to- 

population ratio 
(-) 

Block density (+) - 

Ozbil & Peponis 
(2012) LNR - Mixed-use 

entropy (+) 
Street connectivity 

(+) - 

Ewing et al. 
(2004) MNL - - Average sidewalk 

coverage (+) 
Walk time to 

school (-) 

Ewing et al. 
(2009) MNL - - 

Intersection density 
(+), Sidewalk 
coverage (+) 

Jobs within one 
mile (+) 

Aziz et al. (2017) MNL - - Street width (+) - 

Khan et al. (2014) MNL - - 
3-way/4-way 

intersection density 
(+) 

 

MNL: Multinomial logit regression 
NL: Nested logit regression 
BNL: Binomial regression 
LNR: Linear regression 
(+) = positive relationship 
(-) = negative relationship 

    

 
Similarly, bike mode choice related to higher population densities and greater mix of land uses. 
Interestingly, higher job and population densities have also occasionally been found to result in 
less biking—potentially due to other built environment measures such as street design and 
automobile traffic that may be present barriers to cycling in dense environments (Table 3). 

 
 
 
 
 
 

 
6 Ewing et al. 2019 
7 Adapted from Ewing et al. 2019 
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TABLE 3. BIKE MODE CHOICE AND THE 5DS8 
 

BUILT ENVIRONMENT MEASURES 

STUDY METHOD Density Diversity Design Destination 
accessibility 

Ferrell et al. 
 (2015)  MNL Population 

 density (+)   Mixed use (+) 4-way intersection 
density (+)  - 

Hamre & Buehler 
 (2014)  MNL Population 

 density (+)   
Urban core 

(+)  Bikeway supply (+) - 

Khan et al. (2014) MNL 
Population 

density (+), Job 
density (-) 

- 4-way intersection 
density (+) 

 

Aziz et al. (2017) MNL - - 
Bike land length 

width (+), Fraction 
open space (+) 

- 

Ewing et al. 
(2004) MNL - -  Walk time to 

school (-) 
MNL: Multinomial logit regression 
(+) = positive relationship 
(-) = negative relationship 

    

A recent study from Portland State University provides additional support for the relationship 
between built environment measures and multimodal travel across the US.9 Controlling for 
sociodemographic variables, the author analyzed the relationship between multimodal travel 
behavior and built environment variables such as population density, accessibility, and job 
diversity for roughly 200,000 census block groups. Using linear regression and machine 
learning with American Community Survey and EPA Smart Location data, the author found 
statistically significant built environment predictors of multimodal travel. The author concludes 
that “planners who would like to encourage multimodal travel behavior should consider the 
features, particularly population density, regional accessibility, walkability index, and network 
density, when developing their land-use design strategies for the transportation system.” 

TABLE 4. REGRESSION ANALYSIS OF VMT, SMART LOCATION DATABASE VARIABLES10 
 

VARIABLES ESTIMATE STD. ERROR T-VALUE P-VALUE VIF 
Constant 0.359 0.007 48.780 <0.001 - 

Population density 0.010 <0.001 24.190 <0.001 1.535 
HH, job diversity -0.082 0.063 -1.294 0.196 1.017 

Job diversity -0.023 0.003 -7.851 <0.001 1.592 
Network density -5.998 1.140 -5.262 <0.001 6.031 

Intersection density 2.223 0.123 18.091 <0.001 3.936 
Walkability index 0.011 <0.001 45.797 <0.001 4.443 

Job proximity 0.014 <0.001 32.686 <0.001 1.180 
Auto accessibility -0.080 0.002 -36.339 <0.001 1.559 

Transit accessibility 0.146 0.003 42.948 <0.001 1.935 
Household size 0.024 0.001 22.794 <0.001 1.606 

Household income 0.001 <0.001 3.826 <0.001 2.995 
White -0.018 <0.001 -37.876 <0.001 6.550 
Black -0.015 <0.001 -30.829 <0.001 4.905 
Asian 0.013 0.001 17.815 <0.001 2.202 
Single 0.037 <0.001 78.524 <0.001 1.857 

Low education -0.002 <0.001 -5.323 <0.001 2.960 
No car 0.025 <0.001 81.355 <0.001 1.410 

Work at home 0.044 0.001 49.115 <0.001 1.180 
Observations 206,380     

Model adjusted R2 0.309     

 
8 Adapted from Ewing, Sabour, et al, 2019 
9 Lee, 2022 
10 Adapted from Lee 2022 



2.3 CROSS-CUTTING THEMES 
Apart from overall findings related to the five Ds and VMT, several other themes emerged 
during this review. First, a range of techniques are used to develop the built environment 
measures that are foundational to studies on this topic, and the way these variables are 
measured is important. Second, while there is strong evidence of these relationships in urban 
contexts, much less is known in rural contexts. Finally, built environments that support lower 
VMT often have other measurable benefits, such as reduced maintenance costs due to reduced 
infrastructure needs. 

Theme 1: Measurement Matters 
The five Ds can be calculated in different ways. Two common approaches in the literature use 
non-uniform geographies: 1) calculating variables within an underlying geography, such as 
census block groups; or 2) calculating variables within buffers around specific coordinates, such 
as home locations. Both non-uniform methods such as these have important drawbacks. First, 
calculating built environment measures within nonuniform geographies can present issues 
related to boundary effects and the modifiable unit problem, and tend to understate variation as 
the size of polygons in the underlying geography increases.11 This can be particularly 
problematic in rural areas where Census geometries are typically very large. Calculating the five 
Ds within buffers tends to mitigate these limitations but can be computationally difficult as the 
number of buffer operations required increase (e.g., when calculating buffers for big data 
sources, such as passively collected location data). 

Grid-based options, where built environment measures are calculated within grid cells spanning 
a study region offer a nice compromise between these two prevailing methods. Grid-based 
techniques can mitigate spatial sampling bias and the modifiable areal unit problem, result in 
less information loss when underlying data are available at high resolutions, and simplify 
computation across large geographic areas. An example of such an approach is described in 
Mansfield et al.12 

Theme 2: Understanding the Rural Context 
While there is ample research on the relationship between elements of the built environment 
and VMT in urban settings, there is less understanding of this relationship in rural settings 
where there are fewer, and lower densities, of both people and places. A 2009 study from the 
University of Vermont Research Center provides some evidence from two small size towns in 
Maine, Lisbon and Sanford, which have a similar built environment to many areas in Vermont.13 
The study showed relatively low reductions in VMT (less than 1%) for 3 different smart growth 
modeled scenarios, which assumed that household and employment growth would be 
redirected to dense, mixed-use infill developments in certain parts of each town. Notably, the 
study isolated the influence of dense mixed-use infill development without including significant 
upgrades to transit service. As a result, the authors concluded that “the efficacy of the smart 

 
11 Houston, 2014 
12 Mansfield et al 2023 
13 Weeks, 2009 
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growth scenarios to reduce VMT in Lisbon and Sanford is greatly limited without transit to 
complement the proposed dense, mixed-use developments.” A more recent 2020 study from 
Florida provides some additional nuance about the VMT impact of land use strategies in rural 
areas14. This study was based upon a robust panel dataset of all 67 counties in Florida between 
the 2001 and 2014, with a total of 938 county/year data points, which the authors used to 
estimate a log-linear model of a county’s VMT in relation to eight land use types. Like other 
studies, this one demonstrated the general observation that compact development is generally 
associated with reductions in VMT. Yet, the study showed that for rural counties in Florida, the 
effects depend on the type of land use that is included in built environment. In particular, the 
study showed that in rural areas concentrating industrial and institutional properties produces 
VMT reductions while the concentration of residential housing units did not produce similar 
reductions. Critically, the Florida study quantified built environment measures at the county 
level, potentially missing the role of within-county variability (e.g., small town centers 
accompanied by more traditional suburban development patterns) in shaping VMT—further 
highlighting the importance of the measurement matters theme described above. 

Theme 3: The Benefits of VMT Reductions 
There also exists ample research to indicate the benefits of compact development. The 
literature documents the relationship between urban form and other attributes related to the built 
environment such as cost of maintenance and operations of the assets, stormwater and other 
environmental impacts such as health and safety. 

For example, a 2013 study in Nova Scotia showed that compact development that “increases 
the portion of new housing located in existing urban centers from 25%- 50% reduced 
infrastructure and transportation costs approximately 10% and helped improve public health and 
reduced pollution emissions”15. Furthermore, a 2017 analysis of 300 academic papers found 
that “69% identify positive effects associated with compact urban form: over 70% attribute 
positive effects of economic density (the number of people living or working in an area), 58% 
attribute positive effects to land use mix, and 56% attribute benefits to urban density16”. 
Moreover, there are space benefits of compact development that go beyond VMT. As density 
increases, fewer roadway facilities are needed on a per capital basis (Figure 2). In fact, smart 
growth development patterns require less than half as much land for housing, roads, and 
parking facilities relative to sprawl (Table 5). Such reductions in total space consumed from the 
built environment can benefit roadway maintenance costs as well as stormwater costs (Figure 
3). One estimate indicates that sprawl increases local road lane-miles 10%, annual public 
service costs about 10%, and housing development costs about 8%, increasing total costs an 
average of $13,000 per dwelling unit, or about $550 in annualized costs.17 In a recent study, 
Mattson reached similar conclusions, stating that “construction and operating costs of municipal 
streets and highways, emergency services (expect police operations), parks and recreation, 

 
 

14 Ihlanfedlt, 2020 
15 Stantec, 2013 
16 Ahlfeldt and Pietrostefani, 2017 
17 Burchell and Mukherji (2003) 



water, sewage and solid waste management tend to decline with density”18. Other work has 
reached similar conclusions related to the cost of fire protection in Charlotte, North Carolina19 
and simar overall cost reductions with increasing density in the Latin American context20. 

FIGURE 2. URBAN DENSITY VERSUS ROADWAY SUPPLY ACROSS REGIONS IN THE UNITED 
STATES21 

 

 
TABLE 5. PER CAPITA IMPERVIOUS SURFACE AREA, SMART GROWTH VS SPRAWL 
CONDITIONS22 

SMART GROWTH MIXED SPRAWL 
Vehicles per capita 0.8 0.65 0.5 

Road space per vehicle (ft2) 235 453 670 
Off-street parking spaces per capita 2 4 6 

Land area per parking space (ft2) 275 300 325 
Housing footprint per capita (ft2) 250 375 500 

Road and parking land area per capita (ft2) 878 1,344 1,810 
 
 
 
 
 
 
 
 
 
 

18 Mattson, 2021 
19 CDOT 2021 
20 de Duren and Compean, 2015 
21 Adapted from Litman, 2022 
22 Adapted from Litman, 2022 
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FIGURE 3. RESIDENTIAL SERVICE COSTS INCREASE AS DENSITY DECREASES23 
 

 
 

2.4 LIMITATIONS 
There are two notable limitations of the literature reviewed here. The first, described above, is 
the relative lack of rural studies on this topic. Critically, this study will help fill this gap in the 
literature by exploring built environment relationships with VMT across Vermont, inclusive of 
many rural areas across the state. Second, much of the existing literature relies on cross- 
sectional data, and self-selection may bias findings (i.e., individuals may sort into 
neighborhoods that support lower VMT, resulting in differences in underlying preferences for 
non-auto travel between neighborhoods that bias regression models). Two notable studies have 
addressed this issue using longitudinal panel data—Ihlanfeldt and Knuiman et al.—and both 
have still found associations between built environment and travel behavior, though attenuated 
relative to other studies that did not account for self-selection24. While the passively collected 
data that will be used for this study are longitudinal, privacy restrictions preclude our ability to 
control for possible self-selection bias. Nonetheless, using a novel data source to explore the 
relationship between VMT and the built environment will strengthen the findings of the literature. 

 

Critically, this study will help fill this gap in the 
literature by exploring built environment relationships 
with VMT across Vermont, inclusive of many rural 
areas across the state. 

 

2.5 UNDERSTANDING THE VERMONT CONTEXT 
While the themes from the literature review describe the relationship between the built 
environment and VMT in more urban and suburban contexts, Vermont is a predominantly rural 

 

23 Adapted from Litman, 1989 
24 Knuiman et al., 2014 



state with relatively low population density. There is evidence that, despite its predominantly 
rural character, areas in Vermont with more urban-like built environment still generate reduced 
VMT demonstrating a similar directional relationship to more urban places. Importantly, there is 
evidence that downtown residents across most of the state travel less than average, though 
there is variation across the state (Figure 4). While limited, there is also evidence from the 2009 
National Household Travel Survey that downtown residents produced less VMT than others in 
the state (Figure 5). 

 

FIGURE 4. ANALYSIS OF OCTOBER 2019 SAFEGRAPH DATA IN VERMONT25 
 
 

There is evidence that, despite its predominantly rural 
character, areas in Vermont with more urban-like built 
environment still generate reduced VMT 
demonstrating a similar directional relationship to 
more urban places. 

 

 
 
 
 
 
 

 
25 John E. Adams using Safegraph data from 2019 
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FIGURE 5. ANNUAL VMT BY LOCATION, FROM VERMONT 2009 NHTS26 
 
 

2.6 SPATIAL DATABASE OF BUILT ENVIRONMENT 
MEASURES 

Based on the findings of this literature review the project team assembled a built environment 
database for Vermont. Built environment measures included in this database characterize the 
five Ds described in this chapter, including measures of population and employment density, 
land use diversity, physical design, destination accessibility, and access to transit. A uniform 
hexagonal grid was used as the underlying geographic unit for calculating these measures, 
adopting the grid-and-buffer methods described previously.27 A summary of this database is 
presented in Appendix B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
26 John E. Adams using the 2009 NHTS (Vermont purchased the add on) 
27 https://h3geo.org/docs 



3.0 ESTIMATING BASELINE VMT 
 

In addition to the built environment measures described in Chapter 2, estimates of VMT are 
required to develop a model predicting VMT based on built environment measures. To develop 
VMT estimates under current land use and built environment conditions, the project team 
leveraged passively collected location-based services (LBS) data. LBS data are generated by 
location-aware applications installed on mobile devices and typically offer samples sizes orders 
of magnitude larger than those in most travel surveys. However, unlike travel surveys, these 
data contain minimal contextual data in raw form and require extensive processing to develop 
useful transportation metrics. For this project, RSG obtained and processed passively collected 
LBS data for all devices seen in Vermont in 2019. 

3.1 LBS DATA PROCESSING 
Raw LBS data records have limited information—typically only a unique identifier, a timestamp, 
and a location. As a result of this limitation, all information on travel behavior and attributes of 
the device owner (home and work/habitual locations) must be imputed. Furthermore, raw LBS 
data includes devices with a wide range of data quality. Some devices may generate only a 
handful of location records per month while others may generate thousands of records daily. 
Thus, it is critical for data processing steps to include devices only with sufficient data quality to 
produce reliable inferences and apply methods, such as weighting, to account for differences in 
device quality. The workflow RSG has developed to process LBS data includes three primary 
components: preparing study geometry, data filtering, and data processing (Figure 6). These 
components are described in turn below. 

FIGURE 6. DATA PROCESSING WORKFLOW 

Preparing Study Geometry 
Before processing LBS data for Vermont, the project team compiled demographic, land use, 
transportation network, and point-of-interest (POI) data across the state. Census blockgroups 
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were used to generate an underlying geometry for the region, and transportation network data 
were obtained via the OpenStreetMap (OSM) API using the OSMnx Python package.28 
Additionally, a nationwide layer of airports was obtained, and all airport polygons were included 
as airport POI data for the study. 

The project team also obtained E911 data for the state, including point data with land use 
descriptions and building footprint polygon data (with no land use designation). The RSG team 
used E911 point data to append land use designations to the E911 building footprint data. To do 
so, the 133 unique land use descriptions in the point data were collapsed into 21 categories 
(Table 6). Next, the E911 point closest to each building footprint was calculated using a nearest 
neighbor search and land use designations were assigned to the building footprints. If multiple 
uses were present within a single building footprint, that building was assigned one of the 
mixed-use categories (mixed-use with residential or mixed-use without residential, depending 
on whether one of the uses tagged to the footprint was residential). Finally, non-building 
footprints categories (airport, agriculture, golf course, park, shopping, stadium, trail, quarry) 
were tagged as “non-building” POI. The resulted in a comprehensive land-use dataset spanning 
the state (Figure 7) and a POI dataset containing airports nationwide and other “non-building” 
POI within Vermont. 

FIGURE 7. COMPILED LAND-USE DATASET IN BURLINGTON, VT 
 
 
 
 

28 Boeing, G. 2017. “OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing 
Complex Street Networks.” Computers, Environment and Urban Systems. 65, 126-139. 
doi:10.1016/j.compenvurbsys.2017.05.004 

https://doi.org/10.1016/j.compenvurbsys.2017.05.004


TABLE 6. AGGREGATION OF E911 LAND-USE CATEGORIES 
AGGREGATE LAND-USE CATEGORIES E911 LAND-USE LABELS 

Agriculture Sugarhouse, accessory bard, greenhouse/nursery, 
commercial farm, fish farm/hatchery 

Airport Air support/maintenance facility, helipad/heliport/helispot, 
airport terminal 

Commercial Commercial, other commercial, bank, commercial garage 
Education Educational, school k-12, college/university 

 
Entertainment 

Museum, historic site/point-of-interest, fair/exhibition/rodeo 
grounds. 

auditorium/concert hall/theater/opera house, cultural, fitness 
facility, ice arena, public gathering, golf course 

Gas stations, rest areas Gas station, rest stop/roadside park, visitor/information center 

Healthcare Health clinic, veterinary hospital/clinic, ambulance service, 
outpatient clinic, hospital/medical center 

Hotel RV hookup, lodging b&b/hotel/motel/inn 
 
 

 
Industrial/utility 

Oil/gas facility, gravel pit/quarry/mine, industrial, lumber 
mill/saw mill, transfer station, manufacturing facility, 

commercial construction service, hazardous materials facility, 
communication box, communication tower, solar facility, utility 

pole w/phone, water tank, substation, pump station, public 
telephone, utility, hydroelectric facility, water tower, 

wastewater treatment plant, wind facility/wind tower, public 
water supply well, landfill, public water supply intake, 

hazardous storage facility, waste/biomass facility 

Mixed-use w/ residential Any combination of two uses in same building footprint, 
including at least one residential use 

Mixed-use w/out residential Any combination of two uses in same building footprint, 
including at least one residential use 

Office/institutional Government, office building, town office, city/town hall, town 
garage, state garage, state government facility 

Other Other, accessory building, unknown 
Park-and-ride Park-and-ride/commuter lot, bus station/dispatch facility 

 
Recreation 

Camp, campground, trailhead, shooting range, cemetery, 
boat ramp/dock, ski area/alpine resort, community/recreation 

facility, picnic area, state park, racetrack/dragstrip, sports 
arena/stadium, lookout tower, public beach, harbor/marina, 

youth camp 

 
Residential 

Commercial w/residence, single-family dwelling, multi-family 
dwelling, seasonal home, mobile home, condominium, other 
residential, residential farm, nursing home/long term care, 

institutional residence/dorm/barracks 
Retail Restaurant, grocery store, retail facility, brewery, pharmacy 

 
 

Services 

House of worship, fire station, national guard/armory, law 
enforcement, library, US government facility, courthouse, 

post office, day care facility, US forest facility, border 
crossing, morgue, state capitol, coast guard, border patrol, 

prison/correctional facility 
Train station Railroad station 

Warehouse Storage units, warehouse, food distribution center, private 
and express shipping facility 

Ignore 
Development site, access point, gated w/building, gated w/o 
building, abandoned, temporary structure, EBS tower, PSAP, 

emergency phone/callbox 
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Data Filtering 
Once underlying geometry data were compiled, RSG’s nationwide LBS datastore was queried 
to obtain all location records for any device seen within the Vermont state boundary in each 
season of 2019. Data from 2019 was selected as a full year of data with seasonal affects was 
desired for the study outside of the influence of the COVID-19 pandemic. For each device seen 
within Vermont, this query obtained all records (both within and outside the state) to infer home 
locations for both Vermont residents and Vermont visitors. 

There is significant variation in quality across devices in the nationwide LBS sample. Some 
devices are seen only sporadically while others show anomalous behavior (e.g., impossibly fast 
travel times between locations records). Such devices are not useful for deriving travel behavior 
information and including them in later analysis would produce unreliable inferences. RSG uses 
a set of empirically derived inclusion criteria to isolate devices with data of sufficient quality to 
produce reliable travel behavior estimates. Specifically, devices are only included if: 

• The median speed between sightings over the full study period less than 91 feet per 
second.29 

• The average daily distance traveled is less than 2,400 miles (about the width of the 
United States). 

• Location records are present in at least 5% of all possible 30-minute time bins over the 
study time period (referred to as “data density”). 

• The device is observed in at least 10 unique 7-digit geohashes over the course of the 
study time period.30 

Data Processing 
After filtering out poor quality devices, location records for all remaining devices are processed 
on a device-by-device basis. For each device, a series of processing steps are used: 

Enrich location records. While raw LBS data contain limited information, the land use, POI, 
and transportation network data described above contain a wealth of contextual information that 
can improve the accuracy of data processing. The following pieces of contextual information 
were appended to each location record in the dataset: 

1. Distance from nearest transportation network link and classification of nearest link31 

2. Distance from nearest building footprint and land-use classification for nearest building 
footprint 

3. Boolean indicating whether location record was inside a POI polygon and, if true, the 
POI type 

 
29 The set of all sightings for any given device includes both stationary and moving sightings. Devices 
removed by this filter either periodically jump between locations at extreme speed or are rarely at rest. 
30 Geohashing is a method to encode geographic coordinates. A seven-digit geohash represents 
approximately a 153-meter by 153-meter square. 
31 Classification based on OSM facility types (motorway, trunk, primary, secondary, tertiary, residential 
street) 



Identify stops. First, a smoothing algorithm is applied to calculate 5-minute average speed 
across all location records and records are classified as “stopped” if smoothed speed is below 3 
miles per hour. This smoothing algorithm helps identify true stopped sightings while not falsely 
classifying short stops (e.g., stops at traffic lights or stops due to congestion) as “stopped.” 

Identify anchor locations. Next, a spatial clustering algorithm32 is applied on all stopped 
sightings for each device. A weighting function is used so that location records within or near 
building footprint are more likely to produce clusters while location records near transportation 
network links are less likely to produce clusters. The resulting groups of stopped sightings 
represent anchor locations for the device; these are referred to as “clusters.” These clusters are 
tagged to the study region’s underlying geometry—in this case, census block groups within the 
state of Vermont. 

Identify visits. Once clusters are established for the device, a “dwell” (or visit) is formed each 
time a device is seen staying in the same cluster. The start of the visit is defined as the first 
location record within the cluster and the end of the visit defined by the last location record 
within the cluster. 

Classify anchor locations. A device’s home location is inferred using observed overnighting 
at anchor locations. A device’s work/habitual location is inferred by assessing the importance of 
each location using methods from graph theory.33 Inferred home locations are used to classify 
devices as resident devices (inferred home location inside Vermont) or visitor devices (inferred 
home location anywhere else). 

Identify trips. A “trip” is formed each time a device is seen moving from one cluster to 
another. Each trip is routed on the OSM transportation network using a shortest travel time 
algorithm. Long-distance trips and intermediate stops (e.g., a quick stop at a service station on a 
longer trip) are identified as part of this process. Finally, trip attributes are calculated, including 
trip purpose (e.g., home-based habitual trip), time of day (e.g., AM period), and routed trip 
distance. 

3.2 CUSTOM POST-PROCESSING 
While the pipeline described in Section 2.1 includes devices that meet empirically derived 
inclusion criteria suitable for most applications of passively collected data, generating reliable 
VMT estimates requires stricter device filtering. To support device-level VMT estimation, a 
custom post-processing pipeline was developed (Figure 8). First, a clustering algorithm was 
applied to identify the highest quality tier of processed devices to improve the reliability of VMT 
estimates and remove devices that likely represent non-passenger (e.g., commercial truck) 
travel. Next, device records were resampled to identify the most representative travel week 
within each time period. Finally, a mode choice estimation model was developed to identify trips 
that do not contribute to VMT (non-motorized trips, ferry trips, and flights). These steps are 
described in greater detail below. 

 
 

32 Specifically, density-based spatial clustering algorithm with noise (DBSCAN). 
33 PageRank calculated for a directed graph representing all the devices’ dwells. 
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FIGURE 8. POST-PROCESSING WORKFLOW 

Developing Device Quality Tiers 
To further differentiate processed devices into quality tiers and device type (passenger versus 
commercial truck), several device quality metrics were calculated: 

• Data density: the number of 15-minute timebins with at least one location record divided 
by the total number of 15-minute timebins between the device’s first and last timestamp. 

• Average daily travel distance: total distance travelled by the device divided by the 
number of days with at least one location record. 

• Percentage of days that start and end at home: the percentage of days on which the 
device’s first and last location records were within the device’s home cluster divided by 
the number of days with at least one location record. 

• Typical location score: the mean value of the location frequency score for all four-digit 
geohashes visited by the device over the week, where the location frequency score for 
each four-digit geohash is the percentage of all days in which the device visited the four- 
digit geohash.34 

• Average trip distance: the average great circle (as the bird flies) distance of all trips 
identified for the device. 

 
34 A four-digit geohash represents approximately a 24-mile by 12-mile rectangle. 



• Average trip duration: the average duration of all trips identified for the device. 

• Percentage of truck visits: the percentage of visits identified for the device inside 
Vermont for which the nearest land use is associated with commercial truck activity (gas 
stations, industrial/utility land uses, rest areas, or warehouses) 

• Percentage of flights: the percentage of trips that were flagged as suspected flights. 

• Frequency of data anomalies: the average number of anomalous data events35 identified 
per day for the device. 

Next, a kmeans clustering algorithm was applied, using the quality metrics above to identify five 
device clusters. kmeans is an unsupervised machine learning technique which splits a dataset 
into n clusters (in this case, 5) by maximizing the differences in metrics between clusters and 
minimizing the differences in metrics within clusters. However, there is no guarantee that the 
groups identified will be labeled consistently across applications of the algorithm (i.e., in some 
cases the highest-quality devices may be labeled as group 1, in other cases the highest-quality 
devices may be labeled as group 4, and so on). To ensure comparability across the four 
seasons, a set of rules was developed to re-label kmeans-derived clusters into useful categories 
(three quality tiers, commercial trucks, and junk devices. These rules were: 

• Median data density and percentage of days that start and end at home scores were 
calculated for each cluster and clusters were sorted based on the average of these two 
scores. 

• The cluster with the highest percentage of truck visits was labeled as “commercial 
trucks”. 

• The cluster with the highest combined frequency of data anomalies and percentage of 
flights was labeled as “junk devices”. 

• The three remaining unlabeled clusters were labeled as Tier 1 (highest mean data 
density and percentage of days that start and end at home scores), Tier 2 (second- 
highest scores) and Tier 3 (lowest scores). 

Over the year, nearly 700,000 devices were seen in Vermont, over 145,000 of which were 
identified as Vermont resident devices. Nearly 50,000 of these devices were identified as 
commercial trucks or junk devices. Around 95,000 devices (including 26,651 Vermont residents) 
were placed in the quality Tier 1, with larger numbers of devices in Tiers 2 and 3 (Table 7). 

TABLE 7. PROCESSED DEVICE COUNTS, BY KMEANS-DERIVED GROUP 
 

ALL DEVICES VERMONT RESIDENT DEVICES  
Group Winter Spring Summer Fall Year Winter Spring Summer Fall Year 
Tier 1 23,772 16,162 38,948 16,911 95,793 6,811 5,447 9,422 4,971 26,651 
Tier 2 51,893 35,460 65,497 42,092 194,942 13,901 10,567 13,150 9,449 47,067 
Tier 3 99,226 61,047 118,406 57,126 335,805 19,931 13,233 18,675 10,390 62,229 
Trucks 3,585 2,390 3,794 2,289 12,058 1,715 1,111 1,009 534 4,369 
Junk 7,881 7,109 12,105 4,928 32,023 1,786 1,553 2,154 950 6,443 
Total 186,357 122,168 238,750 123,346 670,621 44,144 31,911 44,410 26,294 146,759 

 
35 Anomalous data events including sequential location records that are more than 100 kilometers apart 
that travel greater than 1,000 kilometers per hour 
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Given the scope of this project and in response to feedback from the Technical Advisory 
Committee received during the December 16th Technical Advisory Committee meeting, the 
commercial truck and junk devices were dropped from the dataset. Additionally, all non-Vermont 
residents were removed, leaving a dataset containing only Vermont residents grouped into three 
quality tiers (bolded and shaded groups in Table 7). 

Resampling Devices 
Previous studies examining the relationship between built environment factors and VMT have 
typically used travel survey data reporting only one day of travel, though a handful of studies 
have used longer time periods.36 While passively collected data offer much longer time frames 
of data collection, data quality can vary dramatically over time and can include periods of 
atypical travel, like vacations. For this study, the project team developed a technique to 
resample passively collected data to provide data like the travel survey data used in previous 
studies, including only the highest-quality and most representative week for each device in each 
season processed. 

To resample these data, a set of quality metrics were calculated over a 7-day rolling window 
over the length of each device’s record (that is, calculated for each consecutive 7-day period of 
device records). To the extent possible, these quality metrics were different than those used to 
identify device quality tiers. Importantly, these metrics also reference a third-party ground truth 
per capita VMT datasets: the Bureau of Transportation Statistics (BTS) Local Area 
Transportation Characteristics for Households (LATCH) estimates. LATCH estimates were 
developed using data form the 2017 National Household Travel Survey (NHTS) and supply 
tract-level suites of per capita VMT and person-miles travelled (PMT) across the United States, 
based largely on socioeconomic characteristics and household types in each tract.37 

Resampling was performed in two stages. First, device-weeks were included if they included all 
7 days (i.e., had at least one location record for each day of the week), included at least one 
trip, included at least 4 days inside Vermont, and had a data density of 0.33 or higher (at least 
252 15-minute timebins with at least one location record over the week). Next, a composite 
quality score was developed for each device-week using four quality indicators: 

• Data density: the number of 15-minute timebins in the past week with at least one 
location record divided by 762 (the maximum number of timebins in a week) 

• Typical location score: mean location frequency score for the week. 

• Deviation in trip rate relative to LATCH estimate: the absolute value of the difference 
between the daily trip rate over the past week and the LATCH estimate of daily trips for 
the tract identified as the device’s home location. 

 
 
 
 

36 For example, Mansfield, Ehrlich, Zmud, and Lee, Built environment influences on active travel in the 
Twin Cities region: evidence from a smartphone-based household travel survey, 2022 
37 https://www.bts.gov/sites/bts.dot.gov/files/docs/browse-statistical-products-and- 
data/surveys/224076/latch2017methodology.pdf 

http://www.bts.gov/sites/bts.dot.gov/files/docs/browse-statistical-products-and-


• Deviation in observed miles travelled relative to LATCH estimate: the absolute value of 
the difference between the sum of trip distances over the past week and the LATCH 
estimate of PMT for the tract identified as the device’s home location. 

For each device, the week with the highest quality score was retained and all other weeks were 
discarded. Across the 4 seasons, a total of 135,947 devices were processed, and 29,943 
devices had at least one qualifying device-week (labeled “qualifying devices” in Table 8 below). 
Most Tier 1 devices (79%) had at least one week that met the inclusion criteria described above 
while relatively few Tier 2 and Tier 3 devices had qualifying weeks (8.3% and 8.5%, 
respectively; Table 8). 

TABLE 8. DEVICES WITH AT LEAST ONE QUALIFYING DEVICE-WEEK AFTER RESAMPLING 
 

WINTER SPRING SUMMER FALL 
 Devices Qualifying 

devices Devices Qualifying 
devices Devices Qualifying 

devices Devices Qualifying 
devices 

Tier 1 6,811 4,416 5,447 4,525 9,422 7,350 4,971 3,929 
Tier 2 13,901 2,259 10,567 603 13,150 2,176 9,449 780 
Tier 3 19,931 608 13,233 1,228 18,675 1,181 10,390 888 
Total 40,643 7,283 29,247 6,356 41,247 10,707 24,810 5,597 

Mode Choice Estimation 
While LBS data contain information on all movements made by a device, not all movements 
contribute to VMT. Critically, trips inferred from LBS data contain flights, non-motorized trips, 
and trips made on public transportation modes such as ferries and buses. A multi-stage mode 
choice model was used to identify four transportation modes for this study: motorized, non- 
motorized, flights, and ferry trips. First, flights were identified directly using a combination of POI 
information and trip characteristics: 

• Trips with an origin and destination in an airport POI 

• Trips with on origin or a destination in an airport POI and a speed greater than 125 mph 

• Trips longer than 340 miles with a speed greater than 125 mph 

Similarly, ferry trips were identified if a device had a trip with more than 25% of its location 
records located in Lake Champlain. 

To identify non-motorized trips, a logit regression model was fitted to Vermont trip data present 
in the 2017 NHTS (n=2,620 trips) predicting the likelihood of a non-motorized trip (walking or 
bicycling) based on trip attributes that could be calculated for trips in the passively collected 
data. Prior to estimating the model, flights and ferry trips—trips for which mode was estimated 
using other data sources—were removed: 

𝜋𝜋𝑖𝑖 = 𝛽𝛽0 + 𝜷𝜷𝜷𝜷𝑖𝑖 + 𝜀𝜀 

where 𝜋𝜋𝑖𝑖 is the probability that trip 𝑖𝑖 used a non-motorized mode (walking or biking), 𝜷𝜷𝑖𝑖 
is a vector of trip variables for individual 𝑖𝑖 with regression coefficients 𝜷𝜷, and 𝜀𝜀 is an error term. 

This regression model revealed largely expected relationship: A 1-mph increase in trip speed is 
significantly associated with a 6% decrease in the likelihood that a trip was non-motorized while 
a 1-unit increase in population density was associated with a 0.01% increase in likelihood (or a 
1% increase in likelihood per 100-unit increase in population density). Weekend trips were 47% 
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more likely to be nonmotorized (Table 9). Trip distance was also borderline significant in the 
expected direction and was retained in the model to improve the application of the model to LBS 
trips. 

TABLE 9. NONMOTORIZED REGRESSION MODEL RESULTS 
 

TRIP VARIABLE ODDS RATIO T-STAT 
Trip length (miles) 0.94 -1.56 
Trip speed (mph) 0.79 -13.44*** 

Trip OD population density (persons/mi2) 1.0001 4.36*** 

Trip on weekend 1.47 2.25* 

Intercept 0.367 2.91** 

AIC 1,292.4  

Pseudo-R2 0.39  
***p<0.001 **p<0.01 *p<0.05   

To identify non-motorized trips in the LBS data, coefficients from the NHTS model were applied 
to calculate the non-motorized likelihood of each trip, after removing flights and ferry trips. For 
each season, all LBS trips were then ordered based on the calculated likelihood, forcing the 
likelihood to equal zero if the trip distance was greater than 25 miles (the longest non-motorized 
trip length reported in the NHTS). Then, the top n ordered trips in each were labelled as non- 
motorized so that the percentage of non-motorized trips in the LBS data matched the 
percentage non-motorized in the NHTS. In general, trip metrics differed as expected based on 
imputed mode, with the shortest mean distance and slowest mean speed for nonmotorized trips 
and the highest mean distance and speed for flights (Table 10). 

TABLE 10. TRIP SUMMARY BY MODE 
 MOTORIZED NON-MOTORIZED FLIGHTS FERRY TRIPS 

Mean trip length (miles) 7.80 0.89 286 8.34 
Mean trip speed (mph) 18.0 1.23 139 11.8 

Number of trips 665,768 89,989 159 2,927 
 
 

3.3 DEVICE WEIGHTING 
LBS data contain only a sample of all persons in the population and, even after isolating the 
highest quality available week for each device, may contain incomplete information on device 
travel. A two-state weighting process was applied to scale observed VMT in the sample of LBS 
devices for each season to the expected population-level VMT across the state of Vermont: a 
demographic expansion to scale the sample of LBS devices to represent the population and a 
temporal adjustment applied to account for travel that may have been missed when a device 
was not providing data. 

First, the sample rate for LBS devices was calculated at the blockgroup level by dividing the 
number of devices with a home location in each blockgroup by the 2019 American Community 
Survey (ACS) population of adults38. A demographic weight (i.e., the number of devices 
represented by the device) was then calculated for each device by taking the inverse of the 
sample rate. A demographically expanded population-level VMT was then calculated at the tract 
level: 

 
38 LBS data obtained from our supplier do not contain data for children under the age of 18 



𝑉𝑉𝑉𝑉𝑉𝑉_𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = ∑ 𝑣𝑣𝑣𝑣𝑡𝑡𝑖𝑖,𝑡𝑡 𝑊𝑊𝑡𝑡 

where 𝑉𝑉𝑉𝑉𝑉𝑉_𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 is the LBS-estimated VMT for tract 𝑡𝑡, 𝑣𝑣𝑣𝑣𝑡𝑡𝑖𝑖,𝑡𝑡 is the estimated VMT for 
device 𝑖𝑖 in tract 𝑡𝑡, and 𝑊𝑊𝑡𝑡 is the demographic expansion factor for tract 𝑡𝑡. 

Next, the daytime data density (i.e., data density calculated only during daytime hours when we 
would expect most trip making to occur) was calculated for each device. The difference between 
tract-level VMT estimates and expected values derived from LATCH estimates was the 
calculated, providing an estimate of “missing” VMT in the LBS estimates before any temporal 
adjustments: 

𝑉𝑉𝑉𝑉𝑉𝑉_𝑟𝑟𝑟𝑟𝑙𝑙𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑉𝑉_𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙ℎ𝑡𝑡 − 𝑉𝑉𝑉𝑉𝑉𝑉_𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 

where 𝑉𝑉𝑉𝑉𝑉𝑉_𝑟𝑟𝑟𝑟𝑙𝑙𝑡𝑡 is the error in LBS-estimated VMT relative to the LATCH VMT estimate 
for the tract, 𝑉𝑉𝑉𝑉𝑉𝑉_𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙ℎ𝑡𝑡. Finally, missing VMT for each tract was assigned to devices 
proportionally based on the number of missing daytime timebins, in the form of a temporal 
adjustment factor: 

𝑣𝑣𝑣𝑣𝑡𝑡_𝑙𝑙𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡 = 𝑣𝑣𝑣𝑣𝑡𝑡𝑖𝑖,𝑡𝑡 ∙ 
(1−𝑎𝑎𝑖𝑖,𝑡𝑡)∙𝑉𝑉𝑉𝑉𝑉𝑉_𝑟𝑟𝑟𝑟𝑙𝑙𝑡𝑡 

∑ 1−𝑎𝑎𝑖𝑖,𝑡𝑡 

where 𝑣𝑣𝑣𝑣𝑡𝑡_𝑙𝑙𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡 is the adjusted VMT for device 𝑖𝑖 in tract 𝑡𝑡 and 𝑎𝑎𝑖𝑖,𝑡𝑡 data density for 
device 𝑖𝑖 in tract 𝑡𝑡. 

After this two-stage weighting process, each device has two distinct expansion factors: a 
demographic expansion factor that represents how many persons are represented by the device 
and an adjusted VMT estimate (𝑣𝑣𝑣𝑣𝑡𝑡_𝑙𝑙𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡) that accounts for “missing VMT” relative to LATCH 
estimates, accounting for difference in sampling across blockgroups. The difference in these 
two factors is important for Task 4: while the demographic factor may be useful as a weight in 
regression modeling, the temporal adjustment is critical in grounding LBS-based estimates of 
VMT to a third-party dataset and ensuring models estimated using these data fully account for 
expected VMT across the state. 

3.4 RESULTS 
The data processing steps described in Section 3.2 produced a dataset consisting of devices, 
trips made by these devices over the course of a week, and an adjusted estimate of weekly 
VMT. These data are described below. 

VMT Dataset Summaries 
The resampled dataset contains over 750,000 trips made by nearly 30,000 devices across the 
year (Table 11). This sample is orders of magnitude larger than survey data available in 
Vermont, including the 2017 NHTS, and much larger than most samples used to produce the 
studies summarized in Task 1. While very larger, the sample does exhibit expected bias 
towards more urban areas, resulting in higher sample rates in these areas and lower sample 
rates in more rural regions of the state (Figure 9). However, these biases can be addressed in 
the Task 4 model through the careful application of the demographic weights developed as 
described in Section 2.3. 
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TABLE 11. DEVICE AND TRIP COUNTS IN RESAMPLED DATASET 
 

TIER 1 TIER 2 TIER 3 TOTAL 
 Trips Devices Trips Devices Trips Devices Trips Devices 

Winter 97,987 97,987 20,695 780 36,155 888 154,837 5,597 
Spring 115,679 4,525 18,010 603 47,776 1,228 181,465 6,356 

Summer 173,825 7,350 53,782 2,176 33,129 1,181 260,736 10,707 
Fall 94,010 4,416 51,156 2,259 16,815 608 161,981 7,283 

Full Year 481,501 20,220 143,643 5,818 133,875 3,905 759,019 29,943 
 
 

  

FIGURE 9. DISTRIBUTION OF DEVICE HOME LOCATIONS (LEFT) AND SAMPLING RATE (RIGHT) 
ACROSS VERMONT 

A similar spatial distribution is present for trips origins. Interestingly, while trip counts are 
substantially higher in urban parts of Vermont, median trip distance in more urban areas is 
much lower than in rural areas (Figure 10). This finding harkens back to some of the Task 1 
findings—namely, that neighborhoods with higher “five D” variables produce less driving, but not 
necessarily fewer trips, because trip distances may be shorter and non-motorized modes may 
be better supported. In fact, higher shares of non-motorized trips are estimated in more urban 
areas of the state and near large recreational areas, including trails and ski slopes (Figure 11). 



 

  
FIGURE 10. DISTRIBUTION OF TRIP ORIGINS (LEFT) AND MEDIAN TRIP DISTANCES (LEFT) 

 

FIGURE 11. DISTRIBUTION OF NON-MOTORIZED MODE SHARE 
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Data Validation 
An important data validation exercise for LBS-derived trip data is to check for expected weekday 
AM and PM peaking (and lack of peaking on weekends) in trip time-of-day profiles. Trip time-of- 
day distributions for Tier 1 devices show strong AM and PM peaking, as expected, while 
weekend trips rise slowly over the day (Figure 12). Further, AM peaking is especially prominent 
for home-based work trips, and home-based other trips dominate the weekend distribution. 
While the trip time-of-day distributions for Tier 2/3 devices have similar characteristics, peaking 
is slightly less prominent and a higher number of trips start very early in the morning, reflecting 
slightly lower quality data for the Tier 2/3 devices (Figure 13). 

 

  

FIGURE 12. TIER 1 TRIP TIME-OF-DAY PLOTS BY TRIP PURPOSE FOR WEEKDAY (LEFT) AND 
WEEKEND (RIGHT) 

 
  

FIGURE 13. TIER 2/3 TRIP TIME-OF-DAY PLOTS BY TRIP PURPOSE FOR WEEKDAY (LEFT) AND 
WEEKEND (RIGHT) 



As an additional validation step, tract-level VMT estimates derived from LBS data were 
compared to LATCH estimates. At the tract level, aggregate VMT from these two data sources 
are well aligned, with an R2 value near 0.90 (Figure 14). Given this project’s focus on VMT, this 
validation is particularly important and demonstrates that the methods described in this memo 
have produced VMT estimates from LBS data. 

 

 
FIGURE 14. COMPARISON OF TRACT-LEVEL VMT DERIVED FROM LBS DATA (HORIZONTAL 

AXIS) AND LATCH ESTIMATES (VERTICAL AXIS) 

The combination of RSG’s standard LBS data processing approach and a custom-developed 
post-processing pipeline generated a high-quality, LBS-derived dataset containing over 750,000 
trips from nearly 30,000 devices seen throughout 2019. Broadly, these data are aligned with the 
findings from Chapter 1: areas of the states with higher “5 d” variables tend to have lower 
average per capita VMT. 

The development of the Vermont VMT model described in the next chapter will dig deeper into 
these relationships by joining the device-level VMT estimates described here to built 
environment measures developed in Task 2 modeling the relationships between built 
environment factors and VMT in Vermont. 
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4.0 DEVELOPING A VMT MODEL FOR VERMONT 
 

This Chapter describes how the data developed during previous phases of this project were 
integrated to create a model that predicts how land use and built environment choices in 
Vermont will impact VMT. First, 2019 estimates derived from location-based services (LBS) 
data, as described in Chapter 2, were joined to the spatial database of built environment 
measures, as described in Chapter 2, using underlying hex cell geometry as described in 
Section 2.6. Next, exploratory analysis informed the development of additional built 
environment variables, including summaries of many “5d” variables in buffers of varying sizes 
around each hex cell across the state. Next, a structured variable selection process was 
employed to reduce the 200+ possible predictor variables in the built environment database to a 
more parsimonious set of variables for the regression model. Finally, the regression model was 
used to generate a 2019 VMT estimate, which could then be compared to other 2019 VMT 
estimates to validate the model for estimating VMT based on built environment measures. Each 
of these steps are described in greater detail below. 

4.1 DATA PREPARATION 
A foundational step in developing the regression model was to join LBS-derived VMT estimates 
to built environment measures. The built environment database described in Section 2.7 used 
hex cells covering the state as a base geometry. To join VMT estimates to these data, the hex 
cell containing devices’ imputed home location was determined and built environment measures 
for that hex cell were joined to the VMT dataset. This resulted in a VMT dataset where each 
observation represents the LBS-derived VMT for a device (the outcome variable in the VMT 
model), with built environment variables describing the hex cell containing that device’s home 
location joined to these VMT estimates. 

Initial exploratory analysis revealed expected relationships between LBS-derived VMT and built 
environment factors: as density and land-use diversity increased, VMT tended to decrease 
(Table 12). 

 
TABLE 12. RELATIONSHIP OF BUILT ENVIRONMENT VARIABLES AND OF LBS-DERIVED VMT 

LBS VMT QUINTILE LBS-DERIVED WEEKLY 
VMT (MEAN) 

POP. DENSITY 
(MEAN) 

EMPLOYMENT 
DENSITY (MEAN) 

LAND-USE MIX 
(MEAN) 

1 (lowest 20%) 36.4 1,383 1,118 0.85 
2 92.3 754 552 0.77 
3 122.1 406 260 0.66 
4 145.7 304 175 0.60 

5 (highest 20%) 247.8 295 182 0.58 

However, this exploratory analysis revealed a shortcoming in the built environment database: 
density and diversity variables were calculated for each cell, which represent a very small 
spatial area. Commonly, built environment variables are calculated across larger spatial areas 
to better represent neighborhood-level effects of the built environment on travel behavior. To 
better capture such effects, a grid-and-buffer method was applied. First, population and 
employment density (by employment type) were calculated within each grid cell. Next, for each 



grid cell, all other grid cells within an x-mile buffer of that grid cell were identified, and average 
population and employment density were calculated across all identified grid cells. The resulting 
value was assigned to the grid cell used as the center of the buffer. This process was repeated 
for all grid cells in the state, using buffer sizes ranging from ¼ mile to 3 miles (Table 13). As 
illustrated below, the size of the grid cell has a significant impact on the distribution of density 
values, with smaller buffer sizes tending to generate “spikier” distributions and larger buffer 
sizes tending to generate smoother distributions (Figure 15). 

 

  

FIGURE 15. IMPACT OF BUFFER SIZE ON DENSITY VARIABLES 

Exploratory analysis also revealed that the VMT variable and several predictor variables were 
not normally distributed in the sample, a common problem in regression analysis. As needed, 
log transformations were applied to these variables. Log-transformation of the outcome (VMT) 
variable improved model performance, so the regression models described below use log- 
transformed VMT as the outcome variable. 

4.2 VARIABLE SELECTION 
The joined dataset described above contained many possible predictive variables, and many of 
these variables were correlated with one another (e.g., high population density may be 
correlated with higher intersection density). To reduce this large set of possible predictive 
variables to a smaller set, a structured variable selection process was employed. First, an initial 
stepwise regression was performed using all non-buffered variables in the built environment 
database. Buffer variables were then assessed independently, and the highest-performing 
buffer variables were introduced to the model resulting from the initial stepwise regression and 
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final variable selection was performed, once again using a stepwise regression approach. 
These steps are detailed below. 

Initial Stepwise Regression 
A linear regression model was specified, using log-transformed VMT as the outcome variable 
and all variables in the built environment database as possible predictor variables. Stepwise 
linear regression was performed using the caret package in R. Variables were retained if they 
met three criteria: 1) were identified by the TAC as variables that could respond to available 
policy levers (e.g., land use and transportation system variables) or controlled for important non- 
modifiable influences of travel behavior (e.g., household income), 2) improved the model’s 
Akaike information criterion (AIC) value, and 3) had a sign in the expected direction, based on 
the Task 1 literature review (e.g., increased transit service should reduce VMT, and have a 
negative sign). This initial variable selection process yielded five significant variables with signs 
in the expected direction: 

• Median household income 

• OSM-derived sidewalk density 

• Intersection density with auto-oriented intersections removed (variable D3B in the Smart 
Location Database) 

• Transit service density (variable D4C in the Smart Location Database; log-transformed) 

• Job accessibility within a 45-minute drive (variable D5AR in the Smart Location 
Database) 

Buffer Variable Selection 
The buffer variables calculated as described above present their own challenges in variable 
selection: within each type of buffer variable, different buffer sizes are highly correlated. For 
example, population density calculated using a 1-mile buffer is highly correlated with population 
density calculated using a 2-mile buffer, and so on. Because of this high degree of correlation, it 
was important to identify the set of buffer variables that most improved model fit before 
performing a final variable selection process. 

To do so, a series of models was estimated, each using the five variables listed above and one 
of the buffer variables. Within each category of buffer variables (e.g., population density 
buffers), the model AIC was calculated, and the two-highest performing variables were 
identified.39 Interestingly, across all categories of buffer variables, the highest performing 
models used buffer sizes between 1 and 3 miles and used a log transformation (Table 13). 

 
 
 
 

 
39 While the absolute value of the AIC does not indicate anything about model performance directly, the 
AIC can be used to test two variations of the same model (for example, one with an extra variable) and 
smaller AIC values indicate better model performance. 



TABLE 13. EFFECT OF BUFFER SIZE ON VMT MODEL PERFORMANCE. TOP-TWO BUFFER 
VARIABLES IN EACH CATEGORY ARE BOLDED AND SHADED 

BUFFER 
SIZE 

POP. 
DENSITY 

EMPLOYMENT 
DENSITY 

RETAIL 
DENSITY 

OFFICE 
DENSITY 

INDUSTRIAL 
DENSITY 

SERVICE 
DENSITY 

ENTERTAIN. 
DENSITY 

¼ mile 47,917 48,046 48,047 48,046 48,027 47,999 48,044 
½ mile 47,849 48,027 48,055 48,044 48,019 47,978 48,044 
¾ mile 47,840 47,988 48,054 48,054 47,999 47,954 48,053 
1 mile 47,847 47,923 47,956 48,038 47,962 47,951 48,047 
2 miles 47,929 47,953 47,928 47,984 47,906 47,989 48,016 
3 miles 48,032 48,024 47,995 48,034 48,010 48,033 48,048 
¼ mile* 47,600 47,597 47,822 47,870 47,833 47,588 47,797 
½ mile* 47,540 47,528 47,691 47,771 47,753 47,527 47,624 
¾ mile* 47,487 47,460 47,590 47,641 47,681 47,465 47,521 
1 mile* 47,426 47,383 47,479 47,491 47,598 47,395 47,394 
2 miles* 47,380 47,302 47,356 47,402 47,501 47,310 47,297 
3 miles* 47,522 47,376 47,362 47,464 47,576 47,386 47,409 

* log-transformed       

Final Stepwise Regression 
Final variable selection was performed by combining the set of variables from the initial 
stepwise regression process with the set of highest-performing buffer variables (i.e., the bolded 
and shaded variables in Table 13). A second stepwise regression was performed, again 
retaining variables if they improved the model’s AIC and had a sign in the expected direction. 
This final variable selection process yielded eight significant variables: 

• Median household income 

• OSM-derived sidewalk density 

• Intersection density with auto-oriented intersections removed (variable D3B in the Smart 
Location Database) 

• Transit service density (variable D4C in the Smart Location Database; log-transformed) 

• Population density in 2-mile buffer (log-transformed) 

• Retail job in 3-mile buffer (log-transformed) 

• Office job density in 2-mile buffer (log-transformed) 

• Land-use mix in 3-mile buffer 

4.3 REGRESSION MODEL 
The final regression model performed quite well, with highly significant coefficients for each 
predictive variable and a coefficient of determination (r2) of roughly 0.25. In simple terms, this 
means that the variables in the model are explaining roughly 25% of the observed variation in 
VMT in the sample which, considering the lack of demographic attributes in the LBS data 
sample and the complexity of travel behavior, is a strong result (Table 14). 
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TABLE 14. VMT MODEL RESULTS 
 

BUILT ENVIRONMENT 
VARIABLE COEFFICIENT T-STAT 

Median household income 0.003 15.91*** 

OSM-derived sidewalk density -0.050 -20.18*** 

Intersection density -0.001 -7.07*** 

Transit service density -0.020 -2.36* 

Population density in 2-mile buffer a -0.048 -5.07*** 

Retail job in 3-mile buffer a -0.027 -3.54*** 

Office job density in 2-mile buffer a -0.038 -6.24*** 

Land-use mix in 3-mile buffer -0.048 -2.36* 

Intercept 5.016 146.23*** 
***p<0.001 **p<0.01 *p<0.05 AIC 50,145.6 
a log-transformed Adjusted-R2 0.25 

As expected, increases in population density, retail job density, office job density, and land-use 
mix are associated with reduced VMT. Increases in intersection density, transit accessibility, 
and sidewalk density are also associated with VMT reductions. Conversely, census block group 
median household income is associated with increased VMT. 

Because the outcome variable and several predictor variables are log-transformed in this model, 
interpreting the coefficients in Table 14 can be difficult. To better illustrate the effects of each 
variable, the marginal effect of a change in each variable on VMT was calculated (Table 15). To 
interpret these results, the marginal effect represents the average change in predicted VMT 
across the sample if the built environment variable were to be changed by the amount in the 
“unit change” column. For example, if population density was increased by 100 persons/mi2 
uniformly across all observations, the model would predict a 10.6 mile, or roughly 7%, reduction 
in per capita VMT. 

TABLE 15. VMT MODEL MARGINAL EFFECTS 
BUILT ENVIRONMENT 

VARIABLE 
UNIT CHANGE IN BUILT ENVIRONMENT 

MEASURE 
MARGINAL EFFECT 

ON WEEKLY VMT 
Median household income $10,000 increase in median income +4.7 (+3%) 

OSM-derived sidewalk density 1 unit increase in sidewalk density -7.2 (-5%) 
Intersection density 50-unit increase in intersection density -8.4 (-6%) 

Transit service density 5-unit increase in transit service density -4.7 (-3%) 
Population density in 2-mile buffer a 100 persons/mi2 increase in population density -10.6 (-7%) 

Retail job in 3-mile buffer a 100 jobs/mi2 increase in job density -15.3 (-10%) 
Office job density in 2-mile buffer a 100 jobs /mi2 increase in job density -21.4 (-15%) 

Land-use mix in 3-mile buffer 0.10 increase in land-use mix -0.7 (-0.5%) 
 

4.4 MODEL VALIDATION AND APPLICATION 
To validate the model, VMT was predicted for each observation in the sample, aggregated to 
census tracts, and compared to both LBS-derived VMT estimates and estimates from the 
Bureau of Transportation Statistics Local-Area Transportation Characteristics (LATCH) dataset. 
Model predictions match observed data very well, with an r2 value over 0.80. Model predictions 
are not as well aligned with LATCH estimates, with an r2 value approaching 0.65 (Figure 16). 



 

 

 

 

 

FIGURE 16. VMT MODEL PREDICTIONS VERSUS LBS OBSERVATIONS (LEFT) AND LATCH 
ESTIMATES (RIGHT) 

However, the model does reliably tend to predict low VMT in places with low LATCH VMT 
estimates: for the lowest LATCH VMT quintile in the state, the model predicts an average 
weekly VMT of 81.2 miles compared to 93.7 miles in the LATCH data; in the highest LATCH 
VMT quintile, the model predicts an average weekly VMT of 141.5 miles compared to 169.2 
miles in the LATCH data (Table 16). It is likely that the discrepancy between model predictions 
and LATCH estimates are due in large part to the lack of demographic information for LBS- 
derived data. 

TABLE 16. COMPARISON OF MODEL PREDICTIONS TO LATCH ESTIMATES, BY LATCH VMT 
QUINTILE 

LATCH VMT QUINTILE MEAN WEEKLY VMT, LATCH MEAN WEEKLY VMT, MODEL 
1 (lowest 20%) 93.7 81.2 

2 138.0 115.9 
3 148.9 127.7 
4 159.3 133.0 

5 (highest 20%) 169.2 141.5 
 

 
Finally, to apply the model across the state, 2019 Vermont population was distributed to hex 
cells using the E911 point and parcel datasets, which were joined as described in Task 3 memo. 
2019 Census block group data were first used to calculate average household size for each 
census block, and households were allocated to hex cells based on the number of single-family 
residential parcels in each cell. Any remaining households were distributed evenly across all 
multi-family parcels in each cell. Finally, the number of households in each cell was multiplied 
by the block group average household size to obtain the number of persons residing in each cell 
across the state. To generate aggregate VMT estimates, the VMT model was used to generate 
a prediction for each resident of Vermont, using the built environment variables for the cell that 
person was allocated to as predictor variables in the model (Figure 17). 
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FIGURE 17. VERMONT RESIDENTS ALLOCATED TO CELLS (LEFT) AND VMT MODEL 
PREDICTIONS (RIGHT) 

Overall, the VMT model provides intuitive results: denser regions across the state tend to have 
lower per capita VMT, with these areas with lower per capita VMT sprinkled evenly across the 
state. Interestingly, while some of the lowest per capita VMT predictions occur in and near 
Burlington, some of the highest per capita VMT predictions occur in communities that circle 
Burlington. This raises an interesting question that can be explored as scenarios are developed 
in future tasks: is it more effective to focus on areas with already low VMT, or is it more effective 
to encourage dense development in areas near low-VMT areas, but that currently have high 
predicted VMT? The future development scenarios described in the next chapter are designed 
in part to shed light on such questions. 



5.0 VERMONT FUTURE GROWTH SCENARIOS 
 

This chapter describes the methods used to develop future growth scenarios for Vermont, apply 
the VMT model described in Chapter 4 to these scenarios, and estimate for each scenario the 
benefits of the predicted change to VMT changes. This chapter is accompanied by an 
interactive online dashboard which allows readers to explore scenarios at greater depth.40 

5.1 SCENARIO NARRATIVES 
In coordination with the project TAC, the project team first developed a series of narratives to 
describe five possible patterns of future development of the built environment in Vermont. These 
narratives are provided below: 

• Dispersed growth: In this scenario, low-density residential development occurs across all 
developable land, ignoring existing community designations and wastewater service 
areas. From a smart growth perspective, this represents a “worst case” scenario. 

• Concentrated growth, concentrated jobs: In this scenario, future residential and 
employment growth is concentrated in already dense neighborhoods. Growth “overflows” 
to less dense neighborhoods when density exceeds a maximum density threshold. 

• Concentrated growth, dispersed jobs: Like above, future residential growth is 
concentrated in already dense areas of the state. However, employment growth in 
allocated to lower density areas (i.e., greenfield development of employment centers). 

• Concentrated growth, balanced land use: In this scenario, future development is focused 
on copying places in Vermont that exemplify smart growth principles today. Growth is 
allocated so that future development mirrors the lowest VMT neighborhoods in Vermont 
today (prototype smart growth neighborhoods). 

• Concentrated growth, unbalanced land use: This scenario allocates residential growth as 
described above. Employment growth, on the other hand, occurs in locations near 
established cores, but not in locations with high population density. 

5.2 DEVELOPING FUTURE SCENARIOS 
The narratives described in the previous section were used to develop a series of “allocation 
rules” for each scenario that assign projected population and employment growth to specific 
areas of Vermont based on the patterns of future development in each scenario. The allocations 
of population and employment are distributed across the 31,739 grid cells covering the state as 
described in Chapter 3. Growth projections are described below, followed by descriptions of 
these allocation rules. 

 
 
 
 
 

40 Dashboard tool link: https://rsginc.shinyapps.io/VTrans_Smart_Growth/ 
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Growth Projections 
Rather than develop population growth projections specifically for this project, we adopted 
population growth projections assumed in the LEAP developed in support of the Pathways 
report.41 The LEAP model offers two projections—a ‘low-growth’ and a ‘high-growth’ projection. 
Each projection estimates county-level population totals from 2019 through 2050. Because the 
projections in the LEAP model pre-dated the 2020 Census., we adjusted these projections by 
re-indexing the projections to the 2020 Census values, maintaining growth rates through 2050 
(Table 17). 

TABLE 17. LEAP GROWTH PROJECTIONS 
 

COUNTY PROJECTION 2020 2035 2050 
Addison Low growth, unadjusted 36,777 38,929 39,618 

 Low growth, adjusted 37,363 39,515 41,633 
 High growth, adjusted 37,363 40,761 45,319 

Bennington Low growth, unadjusted 35,470 36,706 37,099 
 Low growth, adjusted 37,347 38,583 39,777 
 High growth, adjusted 37,347 39,786 43,332 

Caledonia Low growth, unadjusted 29,993 28,010 27,410 
 Low growth, adjusted 30,233 28,250 26,499 
 High growth, adjusted 30,233 29,267 29,505 

Chittenden Low growth, unadjusted 163,774 178,433 183,193 
 Low growth, adjusted 168,323 182,982 197,782 
 High growth, adjusted 168,323 188,536 214,195 

Essex Low growth, unadjusted 6,163 5,385 5,157 
 Low growth, adjusted 5,920 5,142 4,494 
 High growth, adjusted 5,920 5,351 5,112 

Franklin Low growth, unadjusted 49,402 50,887 51,357 
 Low growth, adjusted 49,946 51,431 52,859 
 High growth, adjusted 49,946 53,106 57,810 

Grand Isle Low growth, unadjusted 7,235 7,751 7,917 
 Low growth, adjusted 7,293 7,809 8,322 
 High growth, adjusted 7,293 8,054 9,047 

Lamoille Low growth, unadjusted 25,362 26,700 27,128 
 Low growth, adjusted 25,945 27,283 28,594 
 High growth, adjusted 25,945 28,143 31,136 

Orange Low growth, unadjusted 28,892 30,977 31,649 
 Low growth, adjusted 29,277 31,362 33,438 
 High growth, adjusted 29,277 32,342 36,334 

Orleans Low growth, unadjusted 27,037 26,132 25,853 
 Low growth, adjusted 27,393 26,488 25,664 
 High growth, adjusted 27,393 27,405 28,373 

Rutland Low growth, unadjusted 58,191 54,526 53,415 
 Low growth, adjusted 60,572 56,907 53,661 
 High growth, adjusted 60,572 58,881 59,493 

Washington Low growth, unadjusted 58,409 55,797 53,524 
 Low growth, adjusted 59,807 56,059 52,742 
 High growth, adjusted 59,807 58,040 58,596 

Windham Low growth, unadjusted 42,222 41,107 40,119 
 

41 https://climatechange.vermont.gov/sites/climatecouncilsandbox/files/2022- 
03/Pathways%20Analysis%20Report_Version%202.0.pdf 



 Low growth, adjusted 45,905 44,296 42,838 
 High growth, adjusted 45,905 45,728 47,069 

Windsor Low growth, unadjusted 55,062 53,863 52,795 
 Low growth, adjusted 57,753 56,020 54,440 
 High growth, adjusted 57,753 57,887 59,958 

Statewide Low growth, unadjusted 623,989 629,845 636,234 
 Low growth, adjusted 643,077 652,127 662,744 
 High growth, adjusted 643,077 673,286 725,279 

Prototype Smart Growth Neighborhoods 
The concentrated growth, balanced land use and concentrated growth, unbalanced land use 
scenarios are based on the concept of prototype smart growth neighborhoods. These prototype 
neighborhoods represent places in Vermont that embody smart growth principles today. 
Prototype neighborhoods were identified by first grouping counties into four typologies (Table 
18). Within each of these typologies, cells were sorted by baseline per capita VMT and, 
depending on the value of the smart growth prototype percentile parameter, average built 
environment measures were calculated for cells in the top X% of this distribution. These values 
were then used to define the characteristics for prototype neighborhoods within each typology. 

TABLE 18. COUNTY GROUPINGS FOR IDENTIFYING PROTOTYPE SMART GROWTH 
NEIGHBORHOODS 

COUNTY TYPOLOGY COUNTIES 

Urban Chittenden 
Medium centers Rutland, Washington, Windsor 

Small centers Addison, Bennington, Caledonia, Franklin, 
Lamoille, Orleans, Windham 

Rural Essex, Grand Isle, Orange 

Allocation Rules 
To estimate VMT for each future scenario, the scenario narratives developed in conjunction with 
the TAC needed to be transformed into a framework for allocating growth to certain locations in 
each county. To do so, we developed an allocation framework for each scenario narrative. 
Broadly, an allocation framework consists of four components: 

• Growth cells: a list of cells within each county that are eligible to grow in the future. 
Depending on the scenario narrative, this list of cells can be restrictive (e.g., cells that 
currently have wastewater service) or unconstrained (e.g., cells with developable land) 

• Allocation parameters: variables that impact how growth is allocated to cells. For 
example, the maximum population density parameter used in the concentrated growth, 
concentrated jobs scenario controls how dense cells are allowed to become when 
allocating growth. Multiple values are tested for each parameter to provide a range of 
possible futures for each scenario narrative. 

• Ruleset for growing counties: for counties that are projected to gain population, a 
series of discrete steps are used to allocate growth projections to cells across the 
county. These rulesets are designed so that the distribution of population and 
employment in future scenarios is consistent with the scenario narrative. 

 
 

43 



• Ruleset for shrinking counties: several counties are projected to lose population in 
the LEAP growth projections. For these counties, a series of discrete steps are used to 
allocate growth projections to cells across the county. These rulesets are designed so 
that shrinking counties preserve population and employment in a manner consistent 
with each scenario narrative. 

While the LEAP growth projections contain only population projections, employment projections 
are also needed to develop future scenarios. To calculate employment growth for each county, 
the population-to-employment ratio for each county is calculated for the base year. This ratio is 
applied to population growth projections in subsequent years to estimate employment growth 
projections. These aggregate employment totals are used for scenario allocations. At the end of 
each allocation process, employment allocation was assigned to industry sectors (retail, 
office/institutional, services, entertainment, or other) using the baseline ratio of these sectors in 
each cell. 

Scenario Rulesets 
Rulesets developed for each growth scenario are provided in a synopsis below and in detail in 
the Appendix C. Each of these rulesets is accompanied by Python code that generates 
allocations given baseline distribution of population and employment and county-level growth 
control totals (Table 17). 

Ruleset 1: Dispersed Growth 
For the ruleset for the dispersed growth scenario, all cells with non-protected land are eligible to 
receive future growth. The scenario employed a planning regulation density cap based on the 
population density above which planning regulations are required. For growing counties, 
population and employment growth was allocated up to the planning regulation density cap, 
prioritizing the least dense cells in the county to receive growth first and allocating with that 
priority until growth was exhausted or until all the cells had received growth up to their cap. In 
the latter case, remaining growth was split across all cells. For shrinking counties, population 
and employment was deallocated from cells. Starting with the densest cells, the difference 
between the baseline and planning regulation density cap was removed from the densest cell 
then the next densest cell and so on until the targeted total was deallocated or until removal 
from all cells had occurred. In the latter case, the remaining deallocation was split evenly across 
all cells. 

Ruleset 2: Concentrated growth, concentrated jobs 
For the ruleset for the concentrated growth, concentrated jobs scenario, all cells that have 
wastewater service in the baseline year (2019) were eligible to receive future growth. For this 
scenario, maximum allowed density and a jobs-population mix ratio were the parameters 
controlling the allocation. For growing counties, the amount of population allocated to the 
densest cells first was calculated as the new population the cell could receive before exceeding 
the maximum allowed density. Moving to the next densest cell and so on, the population was 
allocated until the county allocation was exhausted or all possible growth cells had received 
growth, with any remaining split evenly among the eligible cells. Employment was allocated 
using the same process, with the jobs-population mix ratio determining the number of jobs 



allocated to the growth cell. For shrinking counties, removal of population and employment was 
prioritized for the least dense, non-growth cells up to the target deallocation or until removal 
from all non-growth cells was achieved, in which case the remaining deallocation was split 
evenly across the non-growth cells. 

Ruleset 3: Concentrated growth, dispersed jobs 
For the ruleset for the concentrated growth, dispersed jobs scenario, cells that have wastewater 
service in the baseline year were again eligible to receive future population growth. For growing 
counties, the amount of growth that could be allocated to a cell was calculated as the amount it 
could receive before exceeding the maximum allowed density. This allocation was prioritized to 
the growth cells with the lowest employment density, moving to the growth cell with the next 
lowest employment density until the population allocation was exhausted or all growth cells had 
received population, in which case the remainder was split evenly among those eligible to 
receive growth. The employment was then allocated to non-growth cells, prioritizing those with 
the lowest employment density and using the jobs-population mix parameter to determine the 
number of jobs to allocate. For shrinking counties, the least dense non-growth counties were 
prioritized for population removal, continuing until the deallocation target was reached or 
population had been removed from all non-growth cells, at which point the remaining 
deallocation was evenly removed from the growth cells. The same process was used for 
employment. 

Ruleset 4: Concentrated growth, balanced land use 
For the concentrated growth, balanced land use scenario, the growth cells were identified as 
those cells within an Agency of Commerce and Community Development (ACCD) designated 
area (Tier 1), cells immediately adjacent to ACCD designated areas (Tier 2), or cells 
neighboring Tier 2 cells (Tier 3). Two parameters were used to allocate growth in this scenario. 
A smart growth prototype percentile represented the percentile value of baseline cell VMT used 
to define “exemplar” smart growth neighborhoods within each county typology. A prototype 
boost percentage represented a boost applied to the build environment characteristics 
calculated for prototype smart growth neighborhoods (e.g., 25% more dense). For growing 
counties, the Tier 1 growth cell with the lowest VMT was prioritized to receive growth up to the 
reference population density as derived from the exemplar smart growth neighborhoods. The 
growth was then allocated to the next lowest VMT Tier 1 growth cell and so on until the targeted 
population was allocated to all Tier 1 growth cells. If there was remaining growth to be allocated, 
the process was repeated for Tier 2 cells, then Tier 3 cells, then split evenly across all growth 
cells. Employment was allocated through the same process. For shrinking counties, population 
was removed from the highest VMT non-growth cell first, moving to the next highest VMT non- 
growth cell and so on, until reaching the target deallocation or exhausting all of the non-growth 
cells. Any remaining deallocation was removed evenly across all Tier 1, 2, and 3 growth cells. 
Employment was deallocated through the same process. 

Ruleset 5: Concentrated growth, unbalanced land use 
For the concentrated growth, unbalanced land use scenario, growth cells were similarly defined 
as those cells within ACCD designated areas (Tier 1), immediately adjacent to ACCD 
designated areas (Tier 2), and cells neighboring Tier 2 cells (Tier 3). Again, the smart growth 
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prototype percentile and prototype boost percentage were leveraged in this scenario. For 
growing counties, the population was allocated in the same way as the ruleset above for 
concentrated growth, balanced land use. However, for employment the allocation was prioritized 
to the cell with the highest employment density, skipping any Tier 1 cells. For shrinking counties, 
removal was prioritized from the highest VMT non-growth cells, moving to the next highest VMT 
non-growth cell and repeating until the deallocation was exhausted or all non-growth cells had 
population removed. If there was remaining deallocation, that was removed evenly from the Tier 
1, 2, and 3 growth cells. The employment deallocation for this scenario was conducted using the 
same process as the population. 

5.3 CALCULATING SCENARIO BENEFITS 
The resulting VMT estimates were then used to estimate benefits associated with each 
scenario. In addition to changes in GHG emissions—the primary benefit explored in this study— 
four co-benefits were estimated: 

• Changes in fatal and injury crashes, for motorized and non-motorized travel modes. 

• Health impacts associated with changes in physical activity from nonmotorized travel. 

• Changes in infrastructure maintenance costs associated with VMT. 

• Potential reductions on infrastructure construction costs associated with more compact 
development patterns. 

Methods used to quantify each of these benefit pathways are described in turn below. 

GHG Emission Reductions 
To estimate changes in GHG emissions for each development scenario, per capita VMT 
estimates in each hex cell were multiplied by the population of that cell in each scenario to 
obtain an estimate of total weekly VMT produced by each cell. This total was then annualized 
and multiplied by fleet-average CO2-equivalent (CO2eq) emissions per mile to obtain GHG 
emissions for each cell and aggregated across the state to obtain a statewide total. This model 
can be expressed as: 

𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙𝑡𝑡𝑙𝑙𝑡𝑡𝑟𝑟𝑠𝑠𝑖𝑖𝑎𝑎𝑟𝑟 = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 × 𝑟𝑟𝑣𝑣𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑝𝑝𝑒𝑒𝑙𝑙𝐶𝐶𝐶𝐶2  × 52 

Where 𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙𝑡𝑡𝑙𝑙𝑡𝑡𝑟𝑟𝑠𝑠𝑖𝑖𝑎𝑎𝑟𝑟 is the estimate of statewide GHG emissions from private vehicles, 𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎 is 
the model estimated per capita VMT in hex cell 𝑎𝑎, 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 is the scenario population in hex cell 𝑎𝑎, 
and 𝑟𝑟𝑣𝑣𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑝𝑝𝑒𝑒𝑙𝑙𝐶𝐶𝐶𝐶2 is the fleet-average CO2eq emissions per mile. Estimates for fleet average 
CO2eq were adopted from a recent MOVES analysis performed for the Chittenden County 
region in 2020 and 2050 (Table 19). The key data is the CO2eq per mile is 430 grams per mile 
today and expected to decrease to 86 grams per mile by 2050 with the shift toward higher 
shares of electrified transportation. The fleet electrification assumptions that underly this 
reduction in CO2eq per mile for Chittenden County were adopted from the Vermont Climate 
Action Plan and thus assumed relevant for this statewide application.42 

 
42 https://climatechange.vermont.gov/readtheplan 



TABLE 19: CHITTENDEN COUNTY LONG RANGE PLAN - MOVES OUTPUTS 
 

 
2020 

MODEL YEAR 

 
2050 YEAR WITH 

MTP TIP 

CO2eq (kilograms) 1,932,969 455,547 
Methane (kg) CH4 143 13.3 
Nitrous Oxide (kg) N2O 25 6.3 
Total Energy (Million BTUs) 25,208 19,962 
Distance (VMT) 4,497,488 5,268,122 
CO2eq / VMT (g / mile) 430 86 
MTP: metropolitan transportation plan 
TIP: transportation improvement program 

 

Safety Co-Benefit 
Changes in fatal and injury crashes were estimated for both motorized and non-motorized travel 
modes. To do so, crash data were obtained from the Vermont crash data portal for the base 
year (2019), split into motorized and non-motorized travel modes and injury severity (fatal and 
injury crashes). Baseline crash rates per mile travelled were obtained by dividing baseline fatal 
and injury crashes by baseline VMT estimates derived from passively collected data as 
described in Chapter 3. Similarly, non-motorized crashes were divided by estimated statewide 
non-motorized travel duration described in Chapter 3 to develop non-motorized fatal and injury 
crash rates per minute of non-motorized travel (Table 20). 

TABLE 20: VERMONT CRASH RATES 
  

MOTORIZED 
 

NON-MOTORIZED 

Injuries 1,772 173 
Fatalities 42 3 
Total travel 3,867,005,887 (VMT) 1,112,933,520 (active minutes) 
Injury rate 0.109 per million VMT 0.027 per million active minutes 
Fatality rate 4.58 per million VMT 1.56 per million active minutes 

For each future scenario, the rates derived above were multiplied by VMT and active travel 
estimates to obtain fatality and injury estimates for motorized and non-motorized modes at the 
neighborhood scale. Interestingly, because VMT reductions are often accompanied by 
increases in active travel, scenarios that tend to reduce VMT tend to have estimated reductions 
in motorized fatalities and injuries but small increases in non-motorized injuries and fatalities. 

Health Co-Benefit 
In addition to safety co-benefits described above, other health impacts associated with 
increases in active travel were estimated using the population attributable fraction (PAF) 
approach. The PAF approach is commonly applied in comparative risk assessment frameworks 
and is used in several leading transportation health impact tools including the World Health 
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Organization’s Health Economic Assessment Tool (HEAT)43 and the Integrated Transport and 
Health Impact Model (ITHIM).44 The PAF model uses the estimated change in transportation 
physical activity to predict changes in mortality risks from all causes, using relative risk 
estimates obtained from epidemiological evidence that characterized this relationship. 

The first step in developing this model was obtaining the baseline death rate for Vermont, 
excluding accidental deaths and intentional self-harm. The epidemiological evidence used for 
this estimate is valid only for persons aged 15 to 74, so the baseline death rate was calculated 
for this group of Vermonters. These data were obtained from the Vermont Department of Health 
and are summarized below. 

TABLE 21. VERMONT DEATH RATES 
 

AGE RANGE POPULATION 
DEATHS, EXCLUDING 

ACCIDENTAL AND 
SELF-HARM 

DEATH RATE INCLUDE IN RATE 
CALCULATION 

Under 1 5,579 15 0.002689 No 
1-4 years 23,464 8 0.000341 No 
5-14 years 64,156 7 0.000109 No 
15-24 years 86,646 38 0.000439 Yes 
25-34 years 74,408 41 0.000551 Yes 
35-44 years 71,267 95 0.001333 Yes 
45-54 years 78,051 233 0.002985 Yes 
55-64 years 95,379 671 0.007035 Yes 
65-74 years 75,206 1,163 0.015464 Yes 
75-84 years 35,396 1,355 0.038281 No 
85+ years 14,437 1,911 0.132368 No 
15-74 years 480,957 2,241 0.002689  

To estimate changes in mortality associated with changes in active travel, per capita active 
travel time for each cell were first converted in metabolic equivalents (MET-hrs), and the 
difference the MET-hrs between each scenario and the baseline scenario were used to 
calculated the population attributable fraction (PAF): 

𝑅𝑅𝑅𝑅𝑎𝑎,𝑙𝑙 − 𝑅𝑅𝑅𝑅𝑎𝑎,𝑙𝑙 
𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎 =  

 

𝑅𝑅𝑅𝑅𝑎𝑎,𝑙𝑙 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎 is the population attributable fraction for cell 𝑎𝑎, 𝑅𝑅𝑅𝑅𝑎𝑎,𝑙𝑙 is the relative risk of all- 
cause mortality for cell 𝑎𝑎 given estimated active travel in the baseline scenario 𝑙𝑙 and 𝑅𝑅𝑅𝑅𝑎𝑎,𝑙𝑙 is the 
relative risk of all-cause mortality for cell 𝑎𝑎 given estimated active travel for scenario 𝑙𝑙,. Relative 
risk values were estimated using a log-linear dose-response function: 

 𝑉𝑉𝑀𝑀𝑉𝑉𝑎𝑎  

𝑅𝑅𝑅𝑅𝑎𝑎 = 0.90 11.25 

where 𝑉𝑉𝑀𝑀𝑉𝑉𝑎𝑎 is the estimated per capita transportation physical activity for cell 𝑎𝑎. Finally, 
attributable mortality for each cell was estimated: 

𝑃𝑃𝑉𝑉𝑎𝑎 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 × 𝐷𝐷𝑅𝑅𝑙𝑙 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎 
 
 

43 https://www.heatwalkingcycling.org 
44 https://github.com/ITHIM/ITHIM-R 

http://www.heatwalkingcycling.org/


where 𝐷𝐷𝑅𝑅𝑙𝑙 is the baseline death rate as derived in Table 21. 

Maintenance Co-Benefit 
Reductions in per capita VMT are expected to reduce VTrans infrastructure maintenance costs 
related to wear and tear. Because this project focuses on passenger VMT, an estimate of the 
share of roadway maintenance costs contributed by passenger vehicles (auto) was required. 
The 2019 weight-based annual registration report apportions roadway maintenance costs to 
specific vehicles classes and derives estimates of maintenance costs per mile travelled within 
each vehicle class (Table 22). While the cost responsibility per mile for autos is substantially 
lower than for other vehicle types, the larger number of miles travelled by autos makes the total 
auto cost responsibility roughly 30% of the total across all vehicle classes. We adopted the 
estimate derived for private passenger vehicles in this report: $0.01 per mile. 

TABLE 22. VTRANS MAINTENANCE COSTS PER MILE TRAVELED, FROM THE 2019 WEIGHT- 
BASED ANNUAL REGISTRATION REPORT 
 

VEHICLE 
CLASS 

 
BRIDGES 

($THOUSANDS) 

 
PAVEMENT 

($THOUSANDS) 

COST 
RESPONSIBILITY 
($THOUSANDS) 

COST 
RESPONSIBILITY PER 

MILE 
(CENTS PER MILE) 

Auto $38.10 $5.90 $44.00 1¢ 
LT4 $12.70 $2.50 $15.20 1¢ 
SU2 $6.50 $17.90 $24.50 9¢ 
SU3 $2.20 $6.70 $9.00 13¢ 
SU4+ $0.50 $1.60 $2.10 20¢ 
CS3 $0.70 $1.70 $2.40 11¢ 
CS4 $1.30 $3.10 $4.50 14¢ 
3S2 $5.80 $24.10 $29.90 39¢ 
CS5 $0.50 $1.60 $2.00 33¢ 
CS6 $1.40 $5.00 $6.40 47¢ 
CS7+ $1.20 $4.00 $5.20 1,357¢ 
CT4- $0.00 $0.00 $0.10 16¢ 
CT5 $0.40 $1.80 $2.20 47¢ 
CT6+ $0.10 $0.20 $0.30 26¢ 
DS5 $0.10 $0.20 $0.40 33¢ 
DS6 $0.20 $0.30 $0.50 71¢ 
DS7 $0.10 $0.20 $0.40 794¢ 

Avoided Infrastructure Co-Benefit 
To estimate potential reduction in required roadway miles for future smart growth scenarios, we 
applied the relationship between population density and per capita roadway miles described in 
Chapter 2. To do so, we first obtained data from Table HM 72 of the Federal Highway 
Administration’s Highway Statistics 201945 and modeled the relationship between population 
density and lane-miles (Figure 18). We then assigned each grid cell within Vermont to its 

 
 
 

45 https://www.fhwa.dot.gov/policyinformation/statistics/2019/hm72.cfm 
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township and applied the derived function to estimate township-level roadway miles needed for 
each scenario: 

𝑅𝑅𝑉𝑉𝑡𝑡𝑝𝑝𝑠𝑠𝑒𝑒 = 192.02 × 𝑟𝑟−0.48𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑟𝑟𝑒𝑒 

where 𝑅𝑅𝑉𝑉𝑡𝑡𝑝𝑝𝑠𝑠𝑒𝑒 is the number of road-miles per person for each township and 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑟𝑟𝑒𝑒 is 
the population density in the township. 

 

FIGURE 18. RELATIONSHIP BETWEEN POPULATION DENSITY AND ROADWAY MILES PER 
CAPITA 

5.4 RESULTS 
Applying the allocation rulesets as described in Section 5.2 resulted in unique distributions of 
population and employment by industry sector across the 31,739 cells covering Vermont for 
each scenario. Given that many of the benefits calculations presented in Section 5.3 are based 
on per capita VMT, a fundamental step in calculating the benefits associated with each of these 
scenarios is calculating VMT and non-motorized travel duration associated with each scenario. 
To do so, the VMT model and non-motorized travel duration models described in Chapter 3 
were applied. As necessary, buffered built environment variables were developed as previously 
described, using scenario population and employment values instead of baseline values. 

The VMT results for each of the scenarios are depicted in Figure 19. After calculating per capita 
VMT across the state, GHG emissions and associated co-benefits were calculated by applying 
each benefit calculation. These calculations were performed for both horizon years in the LEAP 



projections (2035 and 2050) and for both the low- and high-growth scenarios. All permutations 
of scenario parameters were also tested, resulting in a range of values for each scenario. These 
results are presented in Table 23 and Table 24. Statewide per capita VMT for each scenario is 
presented, alongside scenario benefits relative to the baseline scenario for each growth 
projection. When interpreting benefits, positive values indicate a benefit (e.g., avoided traffic 
fatalities or a reduction in GHG emissions) while negative values indicate a worsening of the 
situation (e.g., an increase in traffic fatalities or GHG emissions). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 19. WEEKLY PER CAPITA VMT ACROSS ALL SCENARIOS 

 
 

Across most benefit categories, the concentrated growth, concentrated jobs and concentrated 
growth, balanced land use scenarios perform best, illustrating the benefits of the smart growth 
strategies embedded in these scenarios. It is noted that the low growth futures in 2035 and 
2050 produce similar outcomes for these two scenarios, but in the high growth futures 
concentrated growth, balanced land use outperforms concentrated growth, concentrated jobs 
scenarios. Results indicate that concentrating growth in areas with density and in areas where 
VMT is low are both capable of significantly reducing per capita VMT; however, in a high growth 
future, focusing growth in areas with low VMT while emulating prototype communities has an 
advantage in achieving further VMT reductions. 

Further, the concentrated growth, concentrated jobs and concentrated growth, balanced land 
use scenarios indicate the importance of concentrating jobs in proximity and in balance with 
population growth. Each of these scenarios outperform the concentrated growth, dispersed jobs 
and concentrated growth, unbalanced land use scenarios in reducing VMT. This outcome has 
implications for future development patterns, indicating that statewide initiatives, regional 
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planning, and local zoning should focus attention on the proximity and balance of job generating 
land uses with population density and growth. 

Conversely, the dispersed growth scenario performs worse than the baseline across all 
outcomes, reinforcing the importance of smart growth principles in reducing transportation GHG 
emissions and providing important co-benefits to Vermont residents. 

With a focus on quantifying the implications of smart growth principles in future scenarios, the 
concentrated growth, balanced land use scenario out to 2050 is poised to produce the following 
results: 

• Reduce weekly VMT to 110 miles per capita; 

• Reduce GHG emissions by over 13,000 metric tons annually; 

• Avoid 1 traffic death per year; 

• Avoid over 31 traffic injuries per year; 

• Reduce physical inactivity mortality by nearly 4 lives annually; 

• Reduce annual maintenance costs by over $1.5 million; and, 

• Avoid 364 additional road miles. 

Conversely, the dispersed growth scenario out to 2050 was poised to produce the following 
results: 

• Increase weekly VMT to nearly 120 miles per capita; 

• Increase GHG emissions by over 17,000 metric tons annually; 

• Increase traffic deaths per year by 1.5; 

• Increase traffic injuries per year by 52; 

• Increase physical activity mortality by nearly 3 lives annually; 

• Cost an additional $2 million in annual maintenance costs; and, 

• Require over 500 additional road miles. 

A comparison of the best (concentrated growth, balanced land use) to worst (dispersed growth) 
scenarios results in a difference of 10 additional miles per capita VMT, 2.5 traffic fatalities per 
year, over 80 traffic injuries per year, physical inactivity mortality of 7 lives annually, and 
approximately $3.5 million in maintenance costs. 

To put these results in context, the GHG emission reductions were compared to the targets set 
forth in the Global Warming Solutions Act. To achieve the target of 80% below 1990 GHG 
emissions levels by 2050, annual reductions of 84,000 metric tons of CO2 equivalent (MTCO2e) 
would be required when starting from 2019 levels (i.e., 3.34 million MTCO2e).46 The GHG 
reductions produced by the concentrated growth, balanced land use scenario would represent 
approximately 15.5% of the annual reduction needed to achieve the target out to 2050. 

 
46 Vermont Greenhouse Gas Emissions Inventory and Forecast: 1990-2020 

https://outside.vermont.gov/agency/anr/climatecouncil/Shared%20Documents/_Vermont_Greenhouse_Gas_Emissions_Inventory_Update_1990-2020_Final.pdf


Conversely, a dispersed growth scenario would contribute to an annual increase in GHG 
emissions, representing an adverse increase in emissions of approximately 20% of the annual 
change needed. 

Full results for each of the scenarios out to 2035- and 2050-time horizons for both low and high 
growth scenarios are tabulated below. In addition, results for each scenario at the statewide and 
hex grid scale can be explored through the project dashboard.47 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

47 Dashboard tool link: https://rsginc.shinyapps.io/VTrans_Smart_Growth/ 
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TABLE 23. SCENARIO BENEFITS, 2035 
 

  

 
BENEFITS CATEGORY 

 

 
DISPERSED GROWTH 

CONCENTRATED 
GROWTH, 

CONCENTRATED 
JOBS 

 
CONCENTRATED 

GROWTH, 
DISPERSED JOBS 

CONCENTRATED 
GROWTH, 

BALANCED LAND 
USE 

CONCENTRATED 
GROWTH, 

UNBALANCED LAND 
USE 

 
Per capita VMT (weekly) 

118.4 114.1 115.9 114.3 115.0 
(118.3 – 118.5) (113.9 – 114.4) (115.7 – 116.1) (114.0 – 114.6) (114.6 – 115.3) 

 GHG emission reductions -7,484 4,888 -284 4,533 2,430 
(annual metric tons) (-7,719 – -7,244) (4,091 – 5,589) (-941 – 264) (3,544 – 5,331) (1,435 – 3,473) 

Lo
w

 G
ro

w
th

 Annually avoided traffic -0.66 0.48 0.08 0.25 0.19 
deaths (-0.69 – -0.63) (0.33 – 0.60) (-0.02 – 0.16) (0.05 – 0.46) (-0.02 – 0.40) 
Annually avoided traffic -23.33 17.99 4.92 5.47 6.14 
injuries (-24.76 – -21.89) (10.84 – 23.51) (0.86 – 8.58) (-4.16 – 16.07) (-4.00 – 16.56) 
Annually avoided physical -1.20 0.67 -0.54 1.55 -0.10 
inactivity mortality (-1.23 – -1.17) (0.41 – 1.02) (-0.63 – -0.46) (1.17 – 1.83) (-0.31 – 0.07) 

 Annually avoided -870,313 568,386 -33,040 527,148 282,618 
maintenance ($) (-897,620 – -842,377) (475,767 – 649,976) (-109,422 – 30,760) (412,102 – 619,930) (166,874 – 403,935) 

 
Avoided road miles 

-279.9 225.1 95.32 95.65 77.59 
(-295.5 – -267.5) (215.2 – 237.2) (75.93 – 114.05) (80.88 – 104.01) (49.03 – 98.47) 

 
Per capita VMT (weekly) 

118.4 113.4 116.6 112.7 113.8 
(118.3 – 118.5) (113.0 – 113.9) (116.3 – 116.8) (112.1 – 113.2) (113.2 – 114.3) 

 GHG emission reductions -9,410 6,060 -3,850 8,085 4,717 
(annual metric tons) (-9,707 – -9,224) (4,519 – 7,282) (-4,507 – -3,017) (6,414 – 9,751) (3,083 – 6,457) 

H
ig

h 
G

ro
w

th
 Annually avoided traffic -0.83 0.58 -0.23 0.57 0.46 

deaths (-0.87 – -0.80) (0.32 – 0.81) (-0.33 – -0.11) (0.20 – 0.95) (0.14 – 0.79) 
Annually avoided traffic -29.59 21.47 -5.71 16.81 17.56 
injuries (-31.41 – -28.34) (9.50 – 32.62) (-9.93 – -0.68) (-1.11 – 35.54) (2.02 – 32.79) 
Annually avoided physical -1.59 0.95 -1.18 2.36 -0.40 
inactivity mortality (-1.63 – -1.51) (0.66 – 1.30) (-1.31 – -1.05) (1.76 – 2.95) (-0.62 – -0.20) 

 Annually avoided -1,094,272 704,660 -447,695 940,116 548,534 
maintenance ($) (-1,128,781 – -1,072,646) (525,528 – 846,854) (-524,153 – -350,883) (745,816 – 1,133,938) (358,500 – 750,919) 

 
Avoided road miles 

-339.3 254.6 -24.39 217.5 177.6 
(-345.3 – -331.1) (226.4 – 275.8) (-53.85 – 2.29) (175.9 – 250.8) (136.9 – 237.3) 



TABLE 24. SCENARIO BENEFITS, 2050 
 

  

 
BENEFITS CATEGORY 

 
 

DISPERSED 
GROWTH 

CONCENTRATED 
GROWTH, 

CONCENTRATED 
JOBS 

 
CONCENTRATED 

GROWTH, 
DISPERSED JOBS 

CONCENTRATED 
GROWTH, 

BALANCED LAND 
USE 

CONCENTRATED 
GROWTH, 

UNBALANCED 
LAND USE 

 
Per capita VMT (weekly) 

120.1 112.4 115.8 112.4 113.7 
(120.0 – 120.3) (111.9 – 113.0) (115.6 – 116.0) (111.8 – 113.0) (113.2 – 114.2) 

 GHG emission reductions -14,324 8,484 -1,630 8,384 4,608 
(annual metric tons) (-14,846 – -13,977) (6,682 – 9,777) (-2,323 – -1043) (6,527 – 10,244) (2,983 – 6,181) 

Lo
w

 G
ro

w
th

 Annually avoided traffic -1.26 0.83 0.05 0.53 0.42 
deaths (-1.33 – -1.21) (0.52 – 1.11) (-0.05 – 0.14) (0.11 – 0.97) (0.09 – 0.73) 
Annually avoided traffic -44.67 31.44 5.93 14.10 15.19 
injuries (-47.67 – -42.46) (16.94 – 44.63) (1.52 – 9.89) (-6.46 – 35.94) (-0.64 – 30.11) 
Annually avoided physical -2.10 1.39 -1.08 2.89 -0.32 
inactivity mortality (-2.16 – -2.04) (0.84 – 1.95) (-1.26 – -0.91) (1.94 – 3.60) (-0.56 – -0.01) 

 Annually avoided -1,665,668 986,591 -189,581 974,978 535,820 
maintenance ($) (-1,726,345 – -1,625,321) (777,028 – 1,136,974) (-270,162 – -121,335) (758,997 – 1,191,212) (34,6890 – 718,807) 

 
Avoided road miles 

-477.6 404.4 145.7 209.0 178.2 
(-486.6 – -468.1) (367.1 – 423.7) (124.9 – 166.9) (166.8 – 243.0) (149.6 – 231.8) 

 
Per capita VMT (weekly) 

119.8 111.3 116.8 110.3 112.2 
(119.6 – 119.8) (110.5 – 112.2) (116.4 – 117.2) (109.3 – 111.4) (111.3 – 113.2) 

 GHG emission reductions -17,418 9,996 -7,708 13,261 7,112 
(annual metric tons) (-17,685 – -16,987) (7,229 – 12,671) (-9,055 – -6,375) (9,768 – 16,648) (3,999 – 10,127) 

H
ig

h 
G

ro
w

th
 Annually avoided traffic -1.49 0.96 -0.45 0.99 0.78 

deaths (-1.53 – -1.43) (0.44 – 1.48) (-0.65 – -0.25) (0.21 – 1.69) (0.21 – 1.35) 
Annually avoided traffic -52.06 35.84 -10.83 31.42 30.87 
injuries (-53.87 – -49.38) (11.45 – 60.38) (-19.83 – -2.13) (-6.79 – 65.03) (4.24 – 58.04) 
Annually avoided physical -2.96 1.82 -2.16 3.96 -1.20 
inactivity mortality (-3.15 – -2.87) (0.68 – 2.82) (-2.45 – -1.83) (2.93 – 5.89) (-1.66 – -0.91) 

 Annually avoided -2,025,391 1,162,389 -896,280 1,5420,12 827,009 
maintenance ($) (-2,056,434 – -1,975,310) (840,682 – 1,473,478) (-1,052,971 – -741,281) (1,135,824 – 1,935,881) (465,062 – 1,177,634) 

 
Avoided road miles 

-513.9 430.5 -61.24 364.0 298.8 
(-527.6 – -500.2) (350.8 – 491.2) (-107.70 – -16.57) (273.7 – 451.1) (191.1 – 385.1) 
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6.0 CASE STUDIES 

 

As observed through the estimation of vehicle miles travelled (VMT) from passively collected, location- 
based data, there are a number of exemplary communities that have lower VMT activity relative to other 
Vermont communities, due to their settlement pattern and characteristics of the local built environment. 
These prototype communities were identified as those with the top 10% performing (i.e., lowest VMT) hex 
cells in the base scenario within the particular county typology (i.e., rural, small centers, medium centers, 
urban). County typologies were identified with feedback from the TAC and their top 10% performing 
communities were identified as outlined in Table 25. 

TABLE 25. COUNTY TYPOLOGIES AND PROTOTYPE COMMUNITIES 
 

TYPOLOGIES 

  
RURAL 

 
SMALL CENTERS 

MEDIUM 
CENTERS 

 
URBAN 

Counties Grand Isle Addison Rutland Chittenden 
 Essex Bennington Washington  
 Orange Caledonia Windsor  
  Franklin   
  Lamoille   
  Orleans   
  Windham   

Prototype Bradford Middlebury Montpelier Burlington 
Communities Fairlee Vergennes Barre  

 Randolph Manchester Rutland  
  Stowe   
  St. Albans   
  Bennington   
  Brattleboro   

 

 
Zooming in on these places, most prototype communities that have low per capita VMT travel patterns in 
the Vermont context tend to exhibit the following features: 

• Dense core area (typically a main street, merchants’ row, or center of a grid network); 

• Mix of uses, services, and amenities; 

• Concentration of population and employment; 

• Water and sewer district; 

• Sidewalk network; and, 

• Access to transit. 

In depth case studies were developed to examine a couple of communities more closely. A selection of 
communities was identified to represent different community sizes distributed across different parts of the 



 
state in coordination with the TAC. Springfield, Rutland, and Morrisville were selected as locations to be 
further investigated to contextualize the base and future forecasted scenarios while providing insights into 
opportunities for smart growth at the community level. Each case study serves to demonstrate the 
opportunities for VMT reduction through implementation of smart growth principles and the utility of the 
forecasted scenarios in identifying the potential challenges, opportunities, and benefits to employing smart 
growth principles at the community scale. 
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6.1 RUTLAND CITY 
Rutland City is a relatively densely populated city that, 
like many Vermont communities, already has a lot of the 
elements in place to support smart growth. This includes 
a relatively dense downtown district with mostly three- to 
five-story buildings along Merchants Row, Center Street, 
and West Street as depicted in Figure 20. Most of these 
buildings have first floor retail spaces at the back of wide 
sidewalks connecting to a grid pattern street network. 

These attributes contribute to the travel behaviors in the 
City and the identification of Rutland as a prototype 
community when compared to other places within the 
medium center county typology. The densest parts of 
downtown Rutland have weekly per capita VMT of less 
than 50 miles traveled in the base scenario. 

Further, the surrounding area land uses outside of the 
City contribute to a smaller footprint of travel activity for 
Rutland City as demonstrated in Figure 21. The US-7 

 
 
RUTLAND PROFILE 

and US-4 corridors provide connectivity to the areas surrounding Rutland City, which are highlighted in the 
lighter color in Figure 21 based on observed travel patterns (i.e., >20% of devices). Travel along these 
corridors results in a relatively tight activity space, with the most concentration of trips occurring at the 
center within Rutland City and some concentration of trips further afield but generally not expanding 
beyond neighboring towns in each direction (i.e., Brandon, Killington, Wallingford, and Castleton). 

FIGURE 20. RUTLAND’S CITY CENTER 

City Population | 15,807 persons (2020) 

County Population | 60,572 persons 
(2020) 

 
City Land Area | 7.6 miles2 

 
Population Density | 2,096 persons / mi2 

 Transit Agency | Marble Valley 
Regional Transit District (The Bus) 

 
 Designated Downtown District 

 Water / Sewer District 



 

Even though Rutland is a prototype 
community, future population growth 
projections forecast Rutland County to lose 
population. Although Rutland City, particularly 
the densest parts of the City’s downtown 
district, would be ideal for concentrating 
growth with the aim of further reducing VMT, 
the anticipated contraction of population at the 
county scale may challenge the community 
when looking to enhance their smart growth 
strategy. 

Looking to the future scenarios, maintaining 
density in the lowest VMT areas of the county 
results in marginal increases in population and 
employment opportunities in Rutland City. This 
is evident when comparing the concentrated 
growth scenarios to the baseline scenario. 
Despite the county contraction of population, 
slight increases to population and employment 
in the City’s downtown enables slightly more 
density in the core area supporting a 0.1% 
decrease in weekly per capita VMT. 

This contrasts with the dispersed growth 
scenario. Although low levels of VMT remain 

 

 
 

FIGURE 21. RUTLAND ACTIVITY SPACE 

in the core area, the downtown loses population and jobs. Additionally, the settlement pattern stretches 
along the US-7 corridor, particularly south of the City, contributing to more sprawl. Although more moderate 
(i.e., slightly lower) weekly VMT per capita can be seen extending south along US-7 in the dispersed 
pattern depicted in Figure 22 as compared to the concentrated growth scenario, population is 
simultaneously drawn away from those core areas with low levels of VMT. The combination of the effects 
of population shifting from areas with low VMT to areas with moderate VMT has the net effect of a 1.1% 
increase in weekly VMT for the City. 

The resulting travel pattern under the dispersed growth scenario can be visualized in contrast to the 
concentrated growth, balanced land use scenario as demonstrated in Figure 22. Further exploration of the 
scenarios within the dashboard tool48 reveals the dynamics of shifting population and jobs, providing a 
fuller picture of the future scenarios for a prototype community that faces countywide reduction in 
population. With a contracting population anticipated for the county, more strategic approaches may be 
required to draw population, jobs, and other smart growth opportunities into the places with more density 
and lower VMT. 

 
48 Dashboard Tool: Vermont Smart Growth Project Dashboard (shinyapps.io) 
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https://rsginc.shinyapps.io/VTrans_Smart_Growth/


 

 
Dispersed Growth Concentrated Growth 

  

FIGURE 22. COMPARISON OF DISPERSED AND CONCENTRATED GROWTH SCENARIOS FOR RUTLAND 



 

6.2 SPRINGFIELD 
Springfield is a medium sized community situated adjacent 
to the Black River and Black River Falls, like many 
Vermont communities established along a river and water 
falls for the resources (i.e., water and power) they provide. 
The community has a designated downtown district that 
runs along Main Street and encompasses parcels on both 
sides of the river. The core of this area has two- and three- 
story buildings with first floor retail and a connected 
sidewalk network. There are also mill buildings within the 
district, some of which have been adaptively repurposed 
for other, updated uses. 

 

 
 
SPRINGFIELD PROFILE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 23. ACTIVITY SPACE FOR SPRINGFIELD 

Springfield has neighboring small communities, 
like North Springfield, Chester, Bellows Falls, 
and Claremont, NH, that contribute to a tight 
network of trips to and from Springfield’s 
downtown. The connections to these other 
small communities in close proximity to the 
area makes for a mix of jobs, services, and 
amenities that support one another through this 
clustered set of defined places. These 
complementary communities and land uses 
represent the majority of trips in the 
demonstrated activity space from the location- 
based data as shown in Figure 23. 

Although the downtown is topographically 
restricted with the river and steep surrounding 
landscape, the area in the downtown district is 
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Town Population | 9,062 (2020) 

 
County Population | 57,753 (2020) 

Town Land Area | 49.3 miles2 

Town Density | 180 persons / mi2 

Downtown District Density | 
Approximately 1,200 persons / mi2 

 
 Transit Agency | Southeast 
Vermont Transit (MOOver) 

 Designated Downtown District 
 
 Water / Sewer District 



 
ripe with opportunities to increase density, which would reduce VMT compared to a more dispersed growth 
pattern. Progress towards repurposing underutilized spaces is outlined in the Main Street Master Plan for 
Springfield49. The Plan recognizes the opportunity to draw more population and employment into the 
district, and the co-benefits this could create, such as activation of public spaces, support for economic 
development, and a more vibrant downtown. 

Springfield on the Move is active in supporting the expansion of opportunities within the district. Challenges 
and costs associated with the repurposing of former industrial spaces and other barriers to increasing 
density can be overcome by some of the mechanisms already available, like the opportunity zone 
designation. Expansion of these types of programs can help to alleviate the significant burden in 
repurposing underutilized, developed areas and encouraging density. 

FIGURE 24. DOWNTOWN SPRINGFIELD 

 
Dispersed growth scenarios for Springfield indicate a less than 1% increase in weekly per capita VMT. 
However, the concentrated growth and balanced land use scenario could reduce VMT by 6.6%. Comparing 
the baseline pattern to the concentrated growth, balanced land use scenario reveals a broader area of 
reduced weekly per capita VMT (i.e., expanded dark purple area in Figure 25). As demonstrated in Figure 
25, closer examination reveals the scale of increased population and employment in the core area and 
affiliated increase in active transportation and reduction in VMT. Looking at the same core area across 
scenarios, a reduction of 3.6 miles traveled and 9 additional minutes of active transportation per capita is 
associated with a concentration of population and jobs in the downtown core. The scenario is consistent 
with plans for the area in terms of redevelopment and adaptive reuse and aligns with the magnitude of 
change potentially achieved through the scale of revitalization and economic development anticipated for 
the area. 

 
 

49 https://springfieldvt.gov/vertical/sites/%7B234B28A5-DB73-489E-ABFA- 
F2FB1EF67C08%7D/uploads/Springfield_Report_6_30_17_Complete.pdf 

https://springfieldvt.gov/vertical/sites/%7B234B28A5-DB73-489E-ABFA-F2FB1EF67C08%7D/uploads/Springfield_Report_6_30_17_Complete.pdf
https://springfieldvt.gov/vertical/sites/%7B234B28A5-DB73-489E-ABFA-F2FB1EF67C08%7D/uploads/Springfield_Report_6_30_17_Complete.pdf


 
 
Baseline Concentrated Growth Balanced Land Use 

  
 

 
FIGURE 25. COMPARISON OF BASELINE AND CONCENTRATED GROWTH BALANCED LAND USE SCENARIOS FOR 
SPRINGFIELD 
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6.3 MORRISVILLE 
Morrisville is a village in Morristown, Vermont. The 
downtown village area has a small, dense core along 
Main Street and Portland Street, coinciding with the 
Historic VT-100 corridor and junction with VT-15A and 
VT-12. Similar to other Vermont villages, it is adjacent to 
the Lamoille River and a set of falls. The core area has 
primarily two- and some three-story buildings with first 
floor retail running along a connected sidewalk network 
as shown in Figure 26. Morrisville has an adjacent 
alignment of VT-100 that connects the surrounding areas 
to VT-100 to the south and VT-15 to the north. 

The core village area has many of the characteristics of 
smart growth; however, the area has a relatively high 
weekly per capita VMT at approximately 100 miles per 
week. This is significantly higher than other comparable 
village centers. Given the proximity to opportunities in 
surrounding communities and in neighboring Chittenden 

 

 

MORRISVILLE PROFILE 
 

 

County, the activity space depicted in Figure 27 for the community indicates that travel to and from the 
Burlington area and other neighbors is a significant contributor to the high average weekly per capita VMT. 

 

FIGURE 26. DOWNTOWN MORRISVILLE 

 
Village Population | 2,086 (2020) 

County Population | 25,945 (2020) 

Village Land Area | 1.96 miles2 

Village Density | 1,000 persons / mi2 

 Transit Agency | Rural 
Community Transportation 

 Designated Downtown District 
 
 Water / Sewer District 



 

For Morrisville, context and employment 
are key to the demonstrated travel 
patterns and the opportunities to reduce 
VMT. Not only do Morrisville residents 
access neighboring Chittenden County 
with frequency, but Morrisville also 
serves as an employment center drawing 
workforce from the Northeast Kingdom, 
or the large geographic area to the 
northeast. Jobs are concentrated 
northeast of the downtown and 
commercial services are dispersed 
outside of the core area. These 
employment opportunities and services 
are outside of a walkable distance from 
downtown. This lack of intermixing of 
uses locally combined with the draw from 
a wide geographic region may contribute 
to the higher per capita VMT 
demonstrated in the baseline scenario. 

Examination of the future scenarios 
provides further insight. In the dispersed 
growth scenario, weekly per capita VMT 
increased by just over 1%. The 
concentrated growth, balanced land use 
scenario could reduce VMT by 2.1%. 
However, it is the concentrated growth, 
concentrated jobs scenario that seems to 
move the needle on bringing the area’s 

 

 

FIGURE 27. MORRISVILLE ACTIVITY SPACE 

weekly per capita VMT down. It may be that the wide commute shed and geographic pull of neighboring 
areas of employment imposes diminishing returns for the concentrated growth scenarios until employment 
is also concentrated in the area. 

The area with the greatest demonstrated VMT reduction is spread across Morrisville north of the core 
downtown, where current industrial and commercial uses are more prevalent. Drawing more employment 
and thus commute trips into these areas in closer proximity to the population density may reduce the need 
for longer trip making to neighboring areas for employment, therefore reducing VMT. This indicates that 
other mechanisms to support job growth may be required to spur the type of smart growth patterns that will 
induce further decreases in VMT, particularly for the historic center of Morrisville. Further, more direct 
connections from the historic center to these areas north of the core may be required to facilitate improved 
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access and VMT reductions. It is notable that some of these areas north of the historic center where growth 
and VMT reductions are anticipated fall outside of the existing water and sewer district. 

The contrast between the dispersed scenario and concentrated growth, concentrated jobs scenario is 
depicted in Figure 28 and can be further explored in the dashboard tool50. For Morrisville, the concentration 
of growth and jobs combines to create a broader area where weekly per capita VMT reductions are 
possible. In this scenario, the concentration of population and employment is most significant in the area 
that encapsulates the historic center of Morrisville, which could achieve a reduction of nearly 5 miles of 
travel per week per capita and an increase of over 9 minutes of weekly active travel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

50 Dashboard Tool: Vermont Smart Growth Project Dashboard (shinyapps.io) 

https://rsginc.shinyapps.io/VTrans_Smart_Growth/


 

 
Dispersed Growth Concentrated Growth, Concentrated Jobs 

  

 
FIGURE 28. COMPARISON OF DISPERSED AND CONCENTRATED GROWTH, CONCENTRATED JOBS SCENARIOS FOR MORRISVILLE 
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6.4 KEY TAKEAWAYS 
Combined with the results of the future scenarios overall, key takeaways demonstrated in these 
case studies include the following: 

• Land Use alone doesn’t move the needle – balance with job proximity is needed; 
while denser, mixed land uses reduce VMT by reducing trip lengths and inducing shift to 
active transportation modes, such as walking, biking or the use of public transit, for daily 
travel activities, an equally important factor that influences VMT is proximity to jobs. Each 
of the case study communities exemplifies the dynamic where, broadly speaking, the 
closer jobs are to where people live, the greater the additional VMT reduction exhibited. 
This inelasticity of VMT as a function of job proximity serves as a crucial reminder that 
wholistically planning communities from a smart growth perspective requires envisioning 
the location of jobs relative to town centers and lived neighborhoods. 

• Vermont has “good bones;” smart growth land use patterns that inherently lead to 
reductions in VMT are rooted in Vermont’s land use goal of town centers surrounded by 
rural countryside and can be enhanced through thoughtful modifications to density, mix of 
land use, and proximity to jobs. Contextual scaling that corresponds to character of place 
and careful coordination to align local actions with state and regional land use plans and 
visions are crucial next steps to build on Vermont’s “good bones” and position the state to 
make further strides in the reduction of VMT. Each of the case study communities has a 
specific type of “good bones” that is elaborated on through the modelling undertaken in 
this study to test and demonstrate how VMT can further be reduced. 

• Regional neighbors influence VMT and travel patterns; Vermont’s scale lends itself to 
region- wide and state-wide travel patterns. This creates a dynamic where folks live, 
work, and play in condensed movement patterns in their town centers to service various 
needs, and complement these needs with more expansive patterns via travel to adjacent 
communities and regions. Each of the case study communities exemplifies and 
documents a specific corresponding VMT response to this complementarity. 



7.0 CONCLUSIONS 
 

This project explored the hypothesis that compact, mixed use development patterns generate 
fewer VMT and GHG emissions per person than more dispersed or rural settlement patterns. 
Current and future patterns of built environment development, land use, population growth, and 
travel behavior were quantified in several scenarios to demonstrate the degree to which smart 
growth strategies in the Vermont context can reduce VMT to meet transportation related GHG 
emission reduction targets. 

Passively collected, location-based data were leveraged to develop weekly per capita VMT 
estimates for the state. VMT estimates and built environment measures were resolved to a hex- 
grid spatial database across the state of Vermont to develop a model relating these measures to 
the weekly per capita VMT. Future scenarios were developed to represent a range of possible 
growth and built environment changes. The passive data derived VMT estimates and model 
relating VMT to built environment measures was applied to the scenarios to predict how VMT 
and other related benefits might change across the potential futures. 

Scenario Evaluations 
Based on the analysis, compact development patterns in future scenarios reduced VMT by 
nearly 10 miles per person per week compared to dispersed patterns, demonstrating the 
opportunity for smart growth strategies in Vermont and the impact they might have on travel 
patterns. Further, the most effective scenarios for smart growth were focused on 
concentrating balanced residential and employment growth in areas with demonstrated 
low VMT based on the characteristics of exemplary low VMT communities. 

The GHG emissions reduction potential of smart growth, based on the most effective 
scenarios evaluated, could amount to over 15% of the annual reduction needed to 
achieve the 2050 Global Warming Solutions Act targets. Conversely, dispersed settlement 
patterns could produce an increase in emissions of approximately 20% of the annual target, 
working against other mechanisms to achieve Vermont’s GHG emissions reduction goals. 

Beyond VMT and GHG emission reductions, smart growth strategies were demonstrated to 
benefit safety (e.g., 1 avoided traffic death and over 30 avoided traffic injuries), health (e.g., 
reduced physical inactivity mortality by nearly 4 lives annually), and maintenance (e.g., reduced 
annual maintenance costs by over $1.5 million) outcomes associated with the transportation 
system in Vermont. 

Case Study Evaluations 
There are communities within Vermont where the built environment supports more condensed 
travel patterns. These exemplary VMT communities, or places with lower VMT compared to 
other communities within the same county typology, tend to have a dense core area, mix of 
uses, concentration of population and employment, water and sewer districts, a sidewalk 
network, and access to transit. There are also locations in Vermont that seem to produce more 
VMT and GHG emissions on average despite a built environment that has smart growth 
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characteristics. Zooming in on a few communities through the lens of the future scenarios 
illuminated some key takeaways for contextualizing the results of this study, including: 

• Denser, mixed land uses require complementary economic opportunities where 
job proximity is a factor for some communities to achieve targeted VMT and GHG 
reductions. Achieving this requires holistic planning to locate jobs relative to compact 
centers and livable neighborhoods; 

• Vermont’s historical settlement patterns and land use goal of denser centers 
surrounded by more rural areas lends itself inherently to smart growth strategies 
where the state’s “good bones” can be enhanced through thoughtful, context sensitive 
modifications to density, land use mix, proximity to jobs, and civil infrastructure; 

• Regional neighbors influence VMT and travel patterns where condensed movement 
patterns within town centers may serve some needs complemented by more expansive 
patterns with travel to adjacent communities to serve other needs. Such activity is 
affected by proximity of neighboring communities to provide complementary services and 
amenities. 

These communities offer insights on the potential scope and scale of VMT and GHG reductions 
that are possible through implementation of smart growth strategies. The work at the local and 
regional level to encourage and operationalize smart growth principles can have a statewide 
impact of contributing over 15% towards the annual reduction needed to achieve the targeted 
GHG emissions reduction in the Global Warming Solutions Act. 



APPENDIX A. ANNOTATED BIBLIOGRAPHY 
 

The existing literature outlined below includes a mix of peer reviewed studies, case studies, and 
policy guidance documents for practitioners. The peer reviewed literature methodologies include 
meta-regression, meta-analysis, case studies, and other statistical methodologies. Notable 
limitations of the existing studies include small sample size, homogenous sample composition, 
and the understanding that correlation between variables does not necessarily imply causation. 
Additional caveats about the existing literature include the use of only some of the D variables 
when there are interdependencies and the use of different metrics to represent the Ds. 

Ahlfedt and Pietrostefani, 2017 
The Economic Effects of Density: A Synthesis 

This paper synthesizes the state of knowledge on the economic effects of density. We consider 
15 outcome categories and 209 estimates of density elasticities from 103 studies. More than 
50% of these estimates have not been previously published and have been provided by authors 
on request or inferred from published results in auxiliary analyses. We contribute own estimates 
of density elasticities of 16 distinct outcome variables that belong to categories where the 
evidence base is thin, inconsistent or non-existent. Along with a critical discussion of the quality 
and the quantity of the evidence base we present a set of recommended elasticities. Applying 
them to a scenario that roughly corresponds to an average high-income city, we find that a 1% 
increase in density implies positive per capita net present values of wage and rent effects of 
$280 and $485. The decrease in real wage net of taxes of $342 is partially compensated for by 
an aggregate amenity effect of $221 and there is a positive external welfare effect of $52. 
Density has important positive amenity and resource implications, but also appears to create a 
scarcity rent, which harms renters and first-time buyers. 

Burchell and Mukherji, 2003 
Conventional Development Versus Managed Growth: The Costs of Sprawl 

We examined the effects of sprawl, or conventional development, versus managed (or "smart") 
growth on land and infrastructure consumption as well as on real estate development and public 
service costs in the United States. Mathematical impact models were used to produce US 
estimates of differences in resources consumed according to each growth scenario over the 
period 2000-2025. Sprawl produces a 21% increase in amount of undeveloped land converted 
to developed land (2.4 million acres) and approximately a 10% increase in local road lane-miles 
(188 300). Furthermore, sprawl causes about 10% more annual public service (fiscal) deficits 
($4.2 billion US dollars) and 8% higher housing occupancy costs ($13 000 US dollars per 
dwelling unit). Managed growth can save significant amounts of human and natural resources 
with limited effects on traditional development procedures. 

Burchell, Robert & Mukherji, Sahan. (2003). Conventional Development Versus Managed 
Growth: The Costs of Sprawl. American journal of public health. 93. 1534-40. 
10.2105/AJPH.93.9.1534. 
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CAPCOA, 2021 
Handbook for Analyzing Greenhouse Gas Emission Reductions, Assessing Climate 
Vulnerabilities, and Advancing Health and Equity 

The California Air Pollution Control Officers Association (CAPCOA) produced an updated, 2021 
handful which provides methods to quantify greenhouse gas emission reductions from a 
specified list of measures, primarily focused on project level actions. In particular, the handbook 
provides guidance for combining emission reductions from transportation measures and 
adjusting VMT reductions to expected GHG savings. For several of the measures, CAPCOA 
uses Stevens, 2016 meta-regression elasticities of VMT which accounts for self-selection. 

 
https://www.caleemod.com/handbook/index.html 

 
Project Level Strategy Maximum GHG Reduction 
Increased residential density -30% 
Increased employment density -30% 
Transit oriented development -31% 
Affordable housing -28% 

Increased Residential Density 
 

http://www.caleemod.com/handbook/index.html


Increased Employment Density 
 

 
Transit Oriented Development 
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Affordable Housing 
 

de Duren and Compean, 2015 
Growing Resources for Growing Cities: Density and the Cost of Municipal Public 
Services in Latin America 

We find that per capita municipal spending on public services is strongly and non-linearly 
correlated to urban population density. Optimal expenditure levels for municipal services are 
achieved with densities close to 9,000 residents per square kilometre. In our study of about 
8,600 municipalities of Brazil, Chile, Ecuador and Mexico, 85% of all municipalities are below 
this ideal density level. This result provides strong policy support for densification, particularly in 
medium-sized cities of developing countries, which are currently absorbing most of the world’s 
urban population growth. 

Libertun de Duren, N., & Guerrero Compeán, R. (2016). Growing resources for growing cities: 
Density and the cost of municipal public services in Latin America. Urban Studies, 53(14), 
3082–3107. https://doi.org/10.1177/0042098015601579 

EPA Smart Location Database 
The U.S. Environmental Protection Agency’s (EPA) and U.S. General Services Administration 
(GSA) Smart Location Database (SLD) addresses the growing demand for data products and 
tools that consistently compare the location efficiency of various places. The SLD summarizes 
several demographic, employment, and built environment variables for every Census block 
group (CBG) in the United States.2 The database includes indicators of the commonly cited “D” 
variables shown in the transportation research literature to be related to travel behavior. The Ds 
include residential and employment density, land use diversity, design of the built environment, 
access to destinations, and distance to transit. SLD variables can be used as inputs to travel 
demand models, baseline data for scenario planning studies, and combined into composite 
indicators characterizing the relative location efficiency of CBG within U.S. metropolitan regions. 

https://doi.org/10.1177/0042098015601579


https://www.epa.gov/smartgrowth/smart-location-database-technical-documentation-and-user- 
guide 

Ewing and Cervero, 2001 
Travel and the Built Environment: A Synthesis 

The potential to moderate travel demand through changes in the built environment is the subject 
of more than 50 recent empirical studies. Elasticities of travel demand with respect to density, 
diversity, design, and regional accessibility are then derived from selected studies. These 
elasticity values may be useful in travel forecasting and sketch planning and have already been 
incorporated into one sketch planning tool, the Environmental Protection Agency’s Smart 
Growth Index model. In weighing the evidence, what can be said, with a degree of certainty, 
about the effects of built environments on key transportation “outcome” variables: trip frequency, 
trip length, mode choice, and composite measures of travel demand, vehicle miles traveled 
(VMT) and vehicle hours traveled (VHT). Trip frequencies have attracted considerable academic 
interest of late. They appear to be primarily a function of socioeconomic characteristics of 
travelers and secondarily a function of the built environment. Trip lengths have received 
relatively little attention, which may account for the various degrees of importance attributed to 
the built environment in recent studies. Trip lengths are primarily a function of the built 
environment and secondarily a function of socioeconomic characteristics. Mode choices have 
received the most intensive study over the decades. Mode choices depend on both the built 
environment and socioeconomics (although they probably depend more on the latter). Studies 
of overall VMT or VHT find the built environment to be much more significant, a product of the 
differential trip lengths that factor into calculations of VMT and VHT. 
Ewing R, Cervero R. Travel and the Built Environment: A Synthesis. Transportation Research 
Record. 2001;1780(1):87-114. doi:10.3141/1780-10 

Ewing and Cervero, 2010 
Travel and the Built Environment: A Meta-Analysis 

Travel variables are generally inelastic with respect to change in measures of the built 
environment. Of the environmental variables considered here, none has a weighted average 
travel elasticity of absolute magnitude greater than 0.39, and most are much less. Still, the 
combined effect of several such variables on travel could be quite large. Consistent with prior 
work, we find that vehicle miles traveled (VMT) is most strongly related to measures of 
accessibility to destinations and secondarily to street network design variables. Walking is most 
strongly related to measures of land use diversity, intersection density, and the number of 
destinations within walking distance. Bus and train use are equally related to proximity to transit 
and street network design variables, with land use diversity a secondary factor. Surprisingly, we 
find population and job densities to be only weakly associated with travel behavior once these 
other variables are controlled. 
Reid Ewing & Robert Cervero (2010) Travel and the Built Environment, Journal of the American 
Planning Association, 76:3, 265-294, DOI: 10.1080/01944361003766766 
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Ewing and Cervero, 2017 
Does Compact Development Make People Drive Less?” the Answer Is Yes 

Both Stevens (2016) and we measure effect sizes in terms of elasticities of vehicles miles 
traveled (VMT) per capita with respect to the five D variables. So we are measuring the same 
thing but getting different results, characterizing them differently, and reaching different 
conclusions. The questions are why the differences, and who has come closest to capturing the 
truth about travel and the built environment? We would never equate Stevens’s well- 
documented, well-reasoned, empirical study to Echenique’s poorly documented simulation 
study, but it may have the potential to do more harm simply because of its relative rigor 
combined with its overreaching on conclusions. Saying that relationships are “inelastic” is not 
the same as saying that relationships are “small.” Inelastic means that elasticities have an 
absolute magnitude of less than 1.0, which means that a 1% change in an independent variable 
may produce up to a 1% change in a dependent variable. No one would call that upper limit 
“small.” Indeed, we don’t think an elasticity of −0.22 is small. A halving of distance to downtown 
leads to a 22% reduction in VMT. 

Ewing et al, 2019 
Key Enhancements to the WFRC/MAG Four-Step Travel Demand Model 

In a National Transit Institute course on “Coordinating Land Use and Transportation,” co-taught 
by Robert Cervero, Uri Avin, and the Principal Investigator on this project, the analytic tools 
session began with a hypothetical: assume that all households, jobs, and other trip generators 
are concentrated in a walkable village rather than segregated by use and spread across a traffic 
analysis zone in the standard suburban fashion. The instructor then asks: How would the 
outputs of conventional four-step travel demand models differ between these two future land 
use scenarios. The answer, to most participants’ surprise, was “Not at all.” Conventional four- 
step travel demand models are used by nearly all metropolitan planning organizations (MPOs), 
state departments of transportation, and local planning agencies, as the basis for long-range 
transportation planning in the United States. In the simplest terms, the four-step model proceeds 
from trip generation, to trip distribution, to mode choice, and finally to route assignment. Trip 
generation tells us the number of trips generated (produced or attracted) in each traffic analysis 
zone (TAZ), usually based on some prediction of vehicle ownership. Trip distribution tells us 
where the trips go, matching trip productions to trip attractions by considering the spatial 
distribution of productions and attractions as well as the impedance (time or cost) of 
connections. Particularly tricky are predictions of trips that remain within the same zone. Mode 
choice tells us which mode of travel is used for these trips, factoring trip tables to reflect the 
relative shares of different modes. Route assignment tells us what routes are taken, assigning 
trips to networks that are specific to each mode. A flaw of the four-step model is its relative 
insensitivity to the so-called D variables. The D variables are characteristics of the built 
environment that are known to affect travel behavior. The Ds are development density, land use 
diversity, street network design, destination accessibility, and distance to transit. This report 
develops a vehicle ownership model (car shedding model), an intrazonal travel model (internal 
capture model), and mode choice model that consider all of the D variables based on household 
travel surveys and built environmental data for 32, 31, and 29 regions, respectively, validates 



the models, and demonstrates that the models have far better predictive accuracy than Wasatch 
Front Regional Council (WFRC)/Mountainland Association of Governments’ (MAG) current 
models. 
Ewing, R., Sabouri, S., Park, K., Lyons, T., & Tian, G. Key Enhancements to the WFRC/MAG 
Four-Step Travel Demand Model. NITC-RR-1086. Portland, OR: Transportation Research and 
Education Center (TREC), 2019. https://dx.doi.org/10.15760/trec.246 

Ewing et al, 2014 
Varying Influences of the Built Environment on Household Travel in 15 Diverse Regions 
of the United States 

This study pools household travel and built environment data from 15 diverse US regions to 
produce travel models with more external validity than any to date. It uses a large number of 
consistently defined built environmental variables to predict five household travel outcomes – 
car trips, walk trips, bike trips, transit trips and vehicle miles traveled (VMT). It employs 
multilevel modelling to account for the dependence of households in the same region on shared 
regional characteristics and estimates ‘hurdle’ models to account for the excess number of zero 
values in the distributions of dependent variables such as household transit trips. It tests built 
environment variables for three different buffer widths around household locations to see which 
scale best explains travel behavior. The resulting models are appropriate for postprocessing 
outputs of conventional travel demand models, and for sketch planning applications in traffic 
impact analysis, climate action planning and health impact assessment. 
Ewing, R., Tian, G., Goates, JP., Zhang, M., Greenwald, M. J., Joyce, A., Kircher, J., & Greene, 
W. (2015). Varying influences of the built environment on household travel in 15 diverse regions 
of the United States. URBAN STUDIES, 52(13), 2330- 
2348. https://doi.org/10.1177/0042098014560991 

Ganson and Miller, 2015 
Mitigating Vehicle-Miles Traveled (VMT) in Rural Development 

Vehicle-miles traveled (VMT) as an environmental review metric is more effective at combating 
climate change than level of service (LOS), and policymakers are beginning to advance its 
adoption for this purpose. Years of research and development prove that VMT mitigation 
strategies such as density, diversity, and design succeed in urban areas, but doubts remain 
about how VMT can be mitigated in rural development. This report reviews the current 
understanding of both urban VMT mitigation and rural development. Finally, additional literature 
and evidential case studies are explored to identify urban VMT mitigation strategies that can be 
modified for the rural scale as well as mitigation strategies unique to the rural context. 

Ruth Miller, 415-373-6442, ruth@blinktag.com and Christopher Ganson, Governor’s Office of 
Planning and Research, 916-324-9236, Email: chris.ganson@opr.ca.gov for National 
Academies Transportation Research Board (TRB) Annual Meeting 2015 

Houston, 2014 
Implications of the modifiable areal unit problem for assessing built environment 
correlates of moderate and vigorous physical activity 
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This study assesses the influence of the Modifiable Areal Unit Problem (MAUP) in analysis of 
the effect of built environment (BE) exposure on moderate and vigorous physical activity 
(MVPA) during walking periods. Adults (n = 55) wore a GPS unit and accelerometer for up to 7 
days. More nearby green space, residential use, and open space were positively associated 
with MVPA after controlling for socio-demographics. Scale and zoning effects were observed in 
models of momentary BE-MVPA relationships using different scales and zone configurations. 
Compared to larger aggregation zones, proximate measures may be better for assessing green 
space and land use exposure during walking periods. Results do not support a prescriptive 
recommendation whether future studies should use a buffer- or grid-based zonal configuration. 
Douglas Houston, Implications of the modifiable areal unit problem for assessing built 
environment correlates of moderate and vigorous physical activity, Applied Geography, Volume 
50, 2014, Pages 40-47, ISSN 0143-6228, https://doi.org/10.1016/j.apgeog.2014.02.008. 

Ihlanfedlt, 2020 
Vehicle Miles Traveled and the Built Environment: New Evidence from Panel Data 

There has been considerable interest in the impact that the built environment has on vehicle 
miles traveled (VMT). While this issue has been extensively researched, due to the heavy 
reliance on crosssectional data, there remains uncertainty regarding how effective local land 
use planning and regulation might be in reducing VMT. Based on a 13-year panel of Florida 
counties, models are estimated that relate VMT to new measures of the spatial distribution of 
alternative land uses within counties and county urban expansion. Identification of causal effects 
is established by including year and county fixed effects, along with an extensive set of control 
variables, and instrumenting those land uses that may be endogenous. Incremental annual 
changes in the spatial concentration of alternative land uses are found to affect VMT. The policy 
implication is that appropriate land use policy can reduce VMT and should be considered part of 
the strategy for dealing with the problem of global warming. 
Ihlanfeldt, K. (2020). Vehicle miles traveled and the built environment: New evidence from panel 
data. Journal of Transport and Land Use, 13(1), 23–48. https://www.jstor.org/stable/26967234 

Knuiman et al, 2014 
A longitudinal analysis of the influence of the neighborhood built environment on 
walking for transportation: the RESIDE study 

The purpose of the present analysis was to use longitudinal data collected over 7 years (from 4 
surveys) in the Residential Environments (RESIDE) Study (Perth, Australia, 2003-2012) to more 
carefully examine the relationship of neighborhood walkability and destination accessibility with 
walking for transportation that has been seen in many cross-sectional studies. We compared 
effect estimates from 3 types of logistic regression models: 2 that utilize all available data (a 
population marginal model and a subject-level mixed model) and a third subject-level conditional 
model that exclusively uses within-person longitudinal evidence. The results support the 
evidence that neighborhood walkability (especially land-use mix and street connectivity), local 
access to public transit stops, and variety in the types of local destinations are important 
determinants of walking for transportation. The similarity of subject-level effect estimates from 
logistic mixed models and those from conditional logistic models indicates that there is little or 

https://www.jstor.org/stable/26967234


no bias from uncontrolled time-constant residential preference (self-selection) factors; however, 
confounding by uncontrolled time-varying factors, such as health status, remains a possibility. 
These findings provide policy makers and urban planners with further evidence that certain 
features of the built environment may be important in the design of neighborhoods to increase 
walking for transportation and meet the health needs of residents. 
Knuiman MW, Christian HE, Divitini ML, Foster SA, Bull FC, Badland HM, Giles-Corti B. A 
longitudinal analysis of the influence of the neighborhood built environment on walking for 
transportation: the RESIDE study. Am J Epidemiol. 2014 Sep 1;180(5):453-61. doi: 
10.1093/aje/kwu171. Epub 2014 Aug 11. PMID: 25117660. 

Lee, 2022 
Exploring Associations Between Multimodality and Built Environment Characteristics in 
the U.S. 

This study demonstrated associations between multimodality and built environment 
characteristics, and proposed policy implications for fostering multimodal travel behaviors. It 
conducted a U.S. nationwide analysis using ordinary least square regression and gradient 
boosting decision tree regressor models with American Community Survey 2015–2019 5-year 
estimates and the United States Environmental Protection Agency Smart Location Database 
version 3.0. Notable findings were as follows: First, built environment characteristics were found 
to be statistically significant predictors of multimodality across the U.S. Second, certain features 
were identified as having considerable importance, specifically including population density, 
regional accessibility, walkability index, and network density, all of which should be given 
particular attention by transportation and land use planners. Third, the non-linear effects of built 
environment characteristics on multimodality suggested an effective range to encourage 
multimodal transportation choice behaviors in various situations. The findings can guide the 
development of effective strategies to transform the built environment, which may subsequently 
be used to minimize reliance on automobiles and promote people to travel more sustainably. 
Lee, Sangwan. 2022. "Exploring Associations between Multimodality and Built Environment 
Characteristics in the U.S." SUSTAINABILITY 14, no. 11: 6629. 
https://doi.org/10.3390/su14116629 

Litman, 2022 
Understanding Smart Growth Savings Evaluating Economic Savings and Benefits of 
Compact Development 

How communities develop can have many direct and indirect impacts. Smart Growth policies 
create more compact, multimodal development which reduces per capita land consumption and 
the distances between destinations. This, in turn, reduces the costs of providing public 
infrastructure and services, improves accessibility, and reduces motor vehicle travel, which 
provides many economic, social and environmental benefits. This report examines these 
impacts. It defines Smart Growth and its alternative, sprawl, summarizes current research 
concerning their costs and benefits, investigates consumer preferences, and evaluates Smart 
Growth criticisms. This report should be useful to anybody involved in development policy 
analysis. 
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Todd Litman (2014), Analysis of Public Policies That Unintentionally Encourage and Subsidize 
Urban Sprawl, commissioned by LSE Cities (www.lsecities.net), for the Global Commission on 
the Economy and Climate (www.newclimateeconomy.net); at https://bit.ly/2QqPhzc. 

Mansfield, Ehrlich, Zmud, and Lee, 2022 
Built Environment Influences on Active Travel in the Twin Cities Region: Evidence from a 
Smartphone-based Household Travel Survey. 

Using travel survey data collected via both smartphone and web-based survey methods, we 
found string associations between built environment factors and the likelihood of meeting 
Centers for Disease Control and Prevention (CDC) physical activity recommendations via active 
transportation. Additionally, we found that using location data beyond respondents’ home 
location to characterize built environment factors strengthened our findings, particularly related 
to employment density for the smartphone sample. This finding speaks to the importance of built 
environment factors in supporting active travel at non-home locations for non-home based trips. 
In addition, we found that measuring aspects of the transportation system itself, such as the 
density of bike facilities and the relative absence of major roadway barriers, are significantly 
associated with an increased likelihood of meeting CDC physical activity recommendations 
through active transportation. More broadly, the findings of this study provide strong evidence 
that rich location information provided by smartphone-based travel survey instruments can 
further our understanding of how the built environment shapes travel behavior. Further, our 
findings demonstrate how such data can be useful to stakeholders beyond traditional 
transportation professionals, including public health researchers and practitioners. 
Mansfield, Ehrlich, Zmud, and Lee, Built environment influences on active travel in the Twin 
Cities region: evidence from a smartphone-based household travel survey, 2022 

Mattson, 2021 
Relationships Between Density and Per Capita Municipal Spending in the United States 

The objective of this research is to determine the relationship between land use, particularly 
density, and per capita spending levels in cities across the United States. A model was 
developed using data from the U.S. Census Bureau’s Annual Survey of State and Local 
Government Finances to estimate the impacts of population-weighted density and other factors 
on per capita municipal spending. This study focused on municipal spending for eight categories 
that theoretically could be influenced by land use development: fire protection, streets and 
highways, libraries, parks and recreation, police, sewer, solid waste management, and water. 
Density was found to be negatively associated with per capita municipal expenditures for the 
following cost categories: operational costs for fire protection, streets and highways, parks and 
recreation, sewer, solid waste management, and water; construction costs for streets and 
highways, parks and recreation, sewer, and water; and land and existing facility costs for police, 
sewer, and water. Results were insignificant for other cost categories, and a positive 
relationship was found for police operations costs. In general, results support the conclusion 
that increased density is associated with reduced per capita municipal spending for several cost 
categories. 
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Jeremy Mattson (2021), “Relationships between Density and per Capita Municipal Spending in 
the United States,” Urban Science, Vo. 5/3: 69 (https://doi.org/10.3390/urbansci5030069). 

Ogra, 2014 
The Role of 6Ds: Density, Diversity, Design, Destination, Distance, and Demand 
Management in Transit Oriented Development (TOD) 

This paper reflects on the efficacy of Transit Oriented Development (TOD) and the primary 
components that constitute it. These components are widely recognized as manifesting 
themselves through the concept of “6Ds": Design, Diversity, Density, Distance, Destination, and 
Demand management. The paper thus investigates the main aspects that underlie these “Ds" 
and how they can equally be taken up in TOD initiatives. The development of efficient and 
sustainable transport systems has become a key mitigation method for major traffic problems 
such as congestion, poor mobility and access to services, as well as greenhouse gas 
emissions. The primary argument of this paper centers on the premise that the application of 
“6Ds" through TOD can go a long way in addressing current challenges that confront urban 
transport within cities. Using a case study, the paper contextualizes one of the “6Ds" and 
subsequent conclusions are drawn thereof in the form of key determinants. 
Aurobindo, Ogra, Robert, Ndebele, Department of Town and Regional Planning Faculty of 
Engineering and the Built Environment (FEBE)University of Johannesburg Beit Street, 
Doornfontein- 2028, Johannesburg, South Africa1aogra@uj.ac.za,2ziphoe@gmail.com 

Stantec, 2013 
Quantifying the Costs and Benefits to HRM, Residents and the Environment of Alternate 
Growth Scenarios 

Stantec (2013), Quantifying the Costs and Benefits to HRM, Residents and the Environment of 
Alternate Growth Scenarios, Halifax Regional Municipality (www.halifax.ca); at 
https://bit.ly/2X9k0TI. 

Stevens, 2016 
Does Compact Development Make People Drive Less? 

Planners commonly recommend compact development in part as a way of getting people to 
drive less, with the idea that less driving will lead to more sustainable communities. Planners 
base their recommendations on a substantial body of research that examines the impact of 
compact development on driving. Different studies, however, have found different outcomes: 
Some studies find that compact development causes people to drive less, while other studies do 
not. I use meta-regression analysis to a) explain why different studies on driving and compact 
development yield different results, and b) combine different findings from many studies into 
reliable statistics that can better inform planning practice. I address the following questions: 
Does compact development make people drive less, and if so, how much less? I find that 
compact development does make people drive less, because most of the compact development 
features I study have a statistically significant negative influence on driving. The impact, 
however, is fairly small: Compact development features do not appear to have much influence 
on driving. My findings are limited to some extent because they are derived from small sample 
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sizes. Planners should not rely on compact development as their only strategy for reducing 
driving unless their goals for reduced driving are very modest and can be achieved at a low 
cost. 

 
Stevens, M. R. (2017). Does Compact Development Make People Drive Less? Journal of the 
American Planning Association, 83(1), 7–18. https://doi.org/10.1080/01944363.2016.1240044 

Reid Ewing & Robert Cervero (2017) “Does Compact Development Make People Drive Less?” 
The Answer Is Yes, Journal of the American Planning Association, 83:1, 19- 
25, DOI: 10.1080/01944363.2016.1245112 

Weeks, 2009 
Transportation Impacts of Smart Growth Development in Maine – Town of Lisbon and 
Town of Sanford 

This study evaluates the reductions in average trip lengths, daily vehicle miles traveled (VMT), 
and daily greenhouse gas (GHG) emissions from on-road automobiles due to smart growth 
development strategies in two Maine towns, Lisbon in Androscoggin County and Sanford in 
York County. In summary, analysis results for Lisbon and Sanford indicate that the densification 
and mixing of residential and employment growth as infill developments has a slight but 
observable impact on VMT and average trip lengths, some roadways in the towns experienced 
VMT increases, which were offset by greater VMT reductions on other roadways, resulting in 
net, network-wide VMT reductions, and greater reductions in VMT and GHG emissions could be 
attained through an increased share of daily transit trips by providing new transit service to/from 
the smart growth developments along existing transportation corridors. The results indicate that 
the efficacy of the smart growth scenarios to reduce VMT in Lisbon and Sanford is greatly 
limited without transit to complement the proposed dense, mixed-use developments. 

Andrew Weeks, University of Vermont Transportation Research Center, 2009.Transportation 
Impacts of Smart Growth Development in Maine – Town of Lisbon and Town of Sanford. 802) 
656‐1312, www.uvm.edu/trc 
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APPENDIX B. BUILT ENVIRONMENT DATABASE 
 

This document includes a list of built environment datasets compiled for the VTrans Smart 
Growth project. The source of each dataset is described along with any assumptions made or 
any pre-processing performed. 

All datasets listed were aggregated to H3 cells at level 8 resolution to create statewide hex 
layers. These data are compiled here: 
https://vhb.maps.arcgis.com/apps/mapviewer/index.html?webmap=a4f2713286eb46a6ab19f48 
bccb7122e 

Socio-Economic Data 
Population 

• Vermont Census 2020 Redistricting Blocks 

• Source - Esri 

• Source Data URL: 
https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/Vermont_Census_ 
2020_Redistricting_Blocks/FeatureServer/0 

• ‘Total Population Count’ (POP100) attribute field was used to generate the hex layer 

• A lot of other demographic attributes are also available in this dataset 

• Technical documentation for the 2020 Census Redistricting block data: 
https://www2.census.gov/programs-surveys/decennial/2020/technical- 
documentation/complete-tech-docs/summary- 
file/2020Census_PL94_171Redistricting_StatesTechDoc_English.pdf 

Employment 

• ArcGIS Business Analyst Employment Data 

• Points of Interest Search for all business categories – Data Source: Data Axle 

• Statewide dataset had to be pieced together due to 5000 record display/export limit. 
Combined dataset available for project team to download from ‘VTrans Smart Growth’ 
ArcGIS Online group 

• Two hex layers were created from this dataset: ‘Count of Employees’ which summarizes 
the ‘Number of Employees’ (EMPNUM) attribute field for each cell, and ‘Count of 
Employers’ which totals the number of business point feature within each cell 

Income 

• ArcGIS Business Analyst 2022 Median Household Income 

• Statewide dataset had to be pieced together due to 5000 record display/export limit. 
Data downloaded in tabular format then joined to the Vermont Census 2020 Redistricting 
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Block dataset. Combined dataset available for project team to download from ‘VTrans 
Smart Growth’ ArcGIS Online group 

Built Environment Data 
Land-Use Diversity 

• VT Data - Statewide Standardized Parcel Data - parcel polygons 

• Source: VCGI (Vermont Center for Geographic Information) 

• Source Data URL: 
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN 
DATA_Cadastral_VTPARCELS_poly_standardized_parcels_SP_v1/FeatureServer/0 

• Several hex layers were created to display statewide parcel data: 

o ‘Parcel Count’ – Count of parcels per hex cell 

o ‘Parcels – Residential’: Count of parcels categorized as 'Mobile Home/la', 'Mobile 
Home/un', 'Residential-1', 'Residential-2', Seasonal-1', or 'Seasonal-2'as‘ for the 
‘Category (Real Estate Only)’ attribute field 

o Parcels – Commercial/Industrial: Count of parcels categorized as 'Commercial', 
'Commercial Apt', 'Industrial' for the ‘Category (Real Estate Only)’ attribute field 

o Parcels – Woodland: Count of parcels categorized as ‘Woodland’ for the 
‘Category (Real Estate Only)’ attribute field 

o Parcels – Utilities: Count of parcels categorized as 'Utilities Elec', 'Utilities Other' 
for the ‘Category (Real Estate Only)’ attribute field 

o Parcels – Farms: Count of parcels categorized as ‘Farms’ for the ‘Category (Real 
Estate Only)’ attribute field 

o Parcels – Other: Count of parcels categorized as 'Miscellaneous', 'Other' for the 
‘Category (Real Estate Only)’ attribute field 

• VT Data - E911 Site Locations 

• Source: VCGI 

• Source Data URL: 
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN 
DATA_Emergency_ESITE_point_SP_v1/FeatureServer/0 

• Hex layer for count of E911 Site Locations per hex was created 

• ‘SITETYPE’ attribute includes 136 categories. Groupings have been developed and 
consolidated into 8 categories and will be applied appropriately. 

• ArcGIS Business Analyst Business Locations 

• See the entry for ArcGIS Business Analyst Employment Data above 



Destination Access 

• Microsoft Building Footprints 

• Source: Microsoft Open Data Commons Open Database License 

• Source Data page with download reference: 
https://github.com/Microsoft/USBuildingFootprints 

• E911 Building Footprints 

• Source: VCGI 

• Source Data URL: 
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN 
DATA_Emergency_FOOTPRINTS_poly_SP_v1/FeatureServer/0 

• Hex layer for count of E911 footprints per hex was created 

• SafeGraph POI Visitation Summary 

• CSV file provided by John Adams (VCGI) 

• Vintage: 2019 

• Summarized by 1) top level place category, 2) 2019 quarterly data 3) level 9 hex 

• Extrapolated to level 8 hex layers by VHB 

• Median weekly visit hex layers for each 

Transportation Network 

• VT Road Centerline 

• Source: VTrans 

• Source Data URL: 
https://maps.vtrans.vermont.gov/arcgis/rest/services/Master/General/FeatureServer/39 

• Summarized by total length per hex 

• OpenStreetMap Sidewalks 

• Source: OpenStreetMap (OSM) 

• Extraction performed in R 

• Summarized by total length per hex 

• Chittenden County Sidewalks & Paths 

• Source: CCRPC 

• Source Data URL: 
https://map.ccrpcvt.org/arcgis/rest/services/CCRPC/CloseTheGap/MapServer/1 

• Summarized by total length per hex 
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Public Transit 

• VT Data - Public -Transit Stops from GTFS Data-Feeds 

• Source: VCGI 

• Data Source URL: 
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN 
DATA_Trans_PUBLICTRANS_point_stops_SP_v1/FeatureServer/0 

• Hex layer represents count of stops per hex 

• VT Data - Public -Transit Routes from GTFS Data-Feeds 

• Source: VCGI 

• Data Source URL: 
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN 
DATA_Trans_PUBLICTRANS_line_routes_SP_v1/FeatureServer/0 

• Hex layer includes attributes for count of unique routes and summary of total route 
length per hex 

Other Datasets 

• Designated Growth Center 

• Source: ANR 

• Source Data URL: 
https://anrmaps.vermont.gov/arcgis/rest/services/map_services/ACCD_OpenData/MapS 
erver/3 

• Display by presence/absence 

• Existing Wastewater Service Area 

• Source: ANR 

• Source Data URL: 
https://anrmaps.vermont.gov/arcgis/rest/services/map_services/ACCD_OpenData/MapS 
erver/11 

• Hex Display – Count of EWSAs per hex 

• Electric Charging Stations 

• Source: ANR 

• Source Data URL: 
https://anrmaps.vermont.gov/arcgis/rest/services/map_services/ACCD_OpenData/MapS 
erver/22 

• Display: Count of EV charging stations per hex 



• VT Data – Broadband Status 2021 

• Source: VCGI 

• Source Data URL: 
https://maps.vcgi.vermont.gov/arcgis/rest/services/PSD_services/OPENDATA_PSD_LA 
YERS_SP_NOCACHE_v1/MapServer/48 

• Separate hex layers for each category in the ‘BB_Status’ attribute field displaying count 
per hex 

• Broadband Availability information with descriptions of categories: 
https://publicservice.vermont.gov/content/broadband-availability 

• Categories/layers: 

o Broadband Served 100/100 

o Broadband Served 100/20 

o Broadband Served 25/3 

o Broadband Served 4/1 

o Broadband Underserved 

• Waterbody Coverage 

• Source: VCGI 

• Source Data URL: 
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN 
DATA_Water_VHDCARTO_poly_SP_v1/FeatureServer/0 

• Metadata: 
https://maps.vcgi.vermont.gov/gisdata/metadata/WaterHydro_VHDCARTO.htm 

• Percent waterbody coverage was calculated for each hex 
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APPENDIX C. SCENARIO RULESETS 
 

 
 

Scenario rulesets 
Rulesets developed for each growth scenario are provided in detail below. Each of these 
rulesets is accompanied by Python code that generates allocations given baseline distribution of 
population and employment and county-level growth control totals. 



Ruleset 1: Dispersed growth 
Growth cells: all cells with non-protected land are eligible to receive future growth. 

 
Allocation parameters: 

1. Planning regulation density cap: the population density above which planning regulations 
are required. 

Ruleset for growing counties: 

1. Starting with the least dense cell in the county, calculate the amount of new population the 
cell can receive before exceeding the planning regulation density cap. Allocate this 
population to the cell and subtract from the remaining county population allocation. 

2. Move to the next least cell and repeat step 1. Continue until all new growth has been 
allocated or population has been allocated to all cells in the county. 

3. If population has been allocated to all cells in the county up to the planning regulation 
density cap and the county allocation has not been exhausted, split the remaining growth 
across all cells. 

4. Allocate employment using the same process as was used to allocate population, again 
using the planning regulation density cap to limit employment density in allocation cells. 

Ruleset for shrinking counties: 

1. Starting with the densest cell in the county, calculate the difference between the baseline 
population and the planning regulation density cap. Remove this population from the cell 
and subtract from the remaining county deallocation. 

2. Move to the next densest cell and repeat step 1. Continue until the county deallocation has 
been reached, or population has been removed from all cells in the county. 

3. If population has been removed from all cells in the county up to the planning regulation 
density cap and the county deallocation has not been reached, split the remaining 
deallocation across all cells. 

4. Deallocate employment using the same process as was used to deallocate population. 
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Ruleset 2: Concentrated growth, concentrated jobs 
Growth cells: cells that have wastewater service in the baseline year (2019) are eligible to 
receive future growth. 

Allocation parameters: 

1. Maximum allowed density: the highest population density allowed in any allocation cell. 

2. Jobs-population mix: the ratio of jobs to population assumed when allocating employment. 

Ruleset for growing counties: 

1. Starting with the densest growth cell in the county, calculate the amount of new population 
the cell can receive before exceeding the maximum allowed density. Allocate this population 
to the cell and subtract from the remaining county population allocation. 

2. Move to the next densest growth cell and repeat step 1. Continue until all new growth has 
been allocated or population has been allocated to all cells in the county. 

3. If population has been allocated to all growth cells in the county up to the maximum allowed 
density and the county allocation has not been exhausted, split the remaining allocation 
across all growth cells. 

4. Allocate employment using the same process as was used to allocate population, again 
using the planning regulation density cap to limit employment density in allocation cells. The 
jobs-population mix parameter is used to determine the number of jobs allocated to a given 
cell. 

Ruleset for shrinking counties: 

1. Starting with the least dense non-growth cell in the county, remove all population from the 
cell and subtract from the remaining county deallocation. 

2. Move to the next least dense non-growth cell and repeat step 1. Continue until the county 
deallocation has been reached, or population has been removed from all non-growth cells in 
the county. 

3. If population has been removed from all non-growth cells in the county and the county 
deallocation has not been reached, split the remaining deallocation across all growth cells. 

4. Deallocate employment using the same process as was used to deallocate population, 
deallocating employment until the jobs-population mix parameter is reached for a cell. 



Ruleset 3: Concentrated growth, dispersed jobs 
Growth cells: cells that have wastewater service in the baseline year (2019) are eligible to 
receive future growth. 

Allocation parameters: 

1. Maximum allowed density: the highest population density allowed in any allocation cell. 

2. Jobs-population-mix: the ratio of jobs to population assumed when allocating employment. 

Ruleset for growing counties: 

1. Starting with the growth cell with the lowest employment density in the county, calculate the 
amount of new population the cell can receive before exceeding the maximum allowed 
density. Allocate this population to the cell and subtract from the remaining county 
population allocation. 

2. Move to the next densest growth cell and repeat step 1. Continue until all new growth has 
been allocated or population has been allocated to all cells in the county. 

3. If population has been allocated to all growth cells in the county up to the maximum allowed 
density and the county allocation has not been exhausted, split the remaining allocation 
across all growth cells. 

4. Allocate employment using the same process as was used to allocate population, but only 
allocate employment to non-growth cells in the county. The jobs-population mix parameter is 
used to determine the number of jobs allocated to a given cell. 

Ruleset for shrinking counties: 

1. Starting with the least dense non-growth cell in the county, remove all population from the 
cell and subtract from the remaining county deallocation. 

2. Move to the next least dense non-growth cell and repeat step 1. Continue until the county 
deallocation has been reached, or population has been removed from all non-growth cells in 
the county. 

3. If population has been removed from all non-growth cells in the county and the county 
deallocation has not been reached, split the remaining deallocation across all growth cells. 

4. Deallocate employment using the same process as was used to deallocate population. 
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Ruleset 4: Concentrated growth, balanced land use 
Growth cells: cells within ACCD designations (Tier 1), as well as cells immediately adjacent to 
ACCD designations (Tier 2) and cells neighboring tier 2 cells (Tier 3). 

Allocation parameters: 

1. Smart Growth Prototype Percentile: the percentile value of baseline cell VMT used to define 
“exemplar” smart growth neighborhoods within each county typology. 

2. Prototype Boost Percentage: a percentage “boost” applied to the built environment 
characteristics calculated for prototype smart growth neighborhoods (e.g., 25% more dense) 

Ruleset for growing counties: 

1. Starting with the lowest-VMT Tier 1 growth cell in the county, calculate the amount of new 
population the cell can receive before exceeding the reference population density (derived 
from the exemplar smart growth neighborhoods). Allocate this population to the cell and 
subtract from the remaining county population allocation. 

2. Move to the next lowest-VMT Tier 1 growth cells and repeat step 1. Continue until all new 
growth has been allocated or population has been allocated to all Tier 1 growth cells. 

3. If unallocated population growth remains after allocating to all Tier 1 growth cells, repeat the 
process for Tier 2 growth cells, and again for Tier 3 growth cells. 

4. If unallocated population growth remains after allocating to all Tier 1, 2, and 3 growth cells in 
the county, split the remaining allocation across all growth cells. 

5. Allocate employment using the same process as was used to allocate population. 

Ruleset for shrinking counties: 

1. Starting with the highest-VMT non-growth cell in the county, remove all population from the 
cell and subtract from the remaining county deallocation. 

2. Move to the next highest-VMT non-growth cell and repeat step 1. Continue until the county 
deallocation has been reached, or population has been removed from all non-growth cells in 
the county. 

3. If population has been removed from all non-growth cells in the county and the county 
deallocation has not been reached, split the remaining deallocation across all Tier 1, 2, and 
3 growth cells. 

4. Deallocate employment using the same process as was used to deallocate population. 



Ruleset 5: Concentrated growth, unbalanced land use 
Growth cells: cells within ACCD designations (Tier 1), as well as cells immediately adjacent to 
ACCD designations (Tier 2) and cells neighboring tier 2 cells (Tier 3). 

Allocation Parameters: 

1. Smart Growth Prototype Percentile: the percentile value of baseline cell VMT used to define 
“exemplar” smart growth neighborhoods within each county typology. 

2. Prototype Boost Percentage: a percentage “boost” applied to the built environment 
characteristics calculated for prototype smart growth neighborhoods (e.g., 25% more dense) 

Ruleset for growing counties: 

1. Starting with the lowest-VMT Tier 1 growth cell in the county, calculate the amount of new 
population the cell can receive before exceeding the reference population density (derived 
from the exemplar smart growth neighborhoods). Allocate this population to the cell and 
subtract from the remaining county population allocation. 

2. Move to the next lowest-VMT Tier 1 growth cells and repeat step 1. Continue until all new 
growth has been allocated or population has been allocated to all Tier 1 growth cells. 

3. If unallocated population growth remains after allocating to all Tier 1 growth cells, repeat the 
process for Tier 2 growth cells, and again for Tier 3 growth cells. 

4. If unallocated population growth remains after allocating to all Tier 1, 2, and 3 growth cells in 
the county, split the remaining allocation across all growth cells. 

5. Allocate employment starting with the cell with the highest employment density, but skipping 
any Tier 1 cells (i.e., do not allocate any employment to Tier 1 cells). 

Ruleset for shrinking counties: 

1. Starting with the highest-VMT non-growth cell in the county, remove all population from the 
cell and subtract from the remaining county deallocation. 

2. Move to the next highest-VMT non-growth cell and repeat step 1. Continue until the county 
deallocation has been reached, or population has been removed from all non-growth cells in 
the county. 

3. If population has been removed from all non-growth cells in the county and the county 
deallocation has not been reached, split the remaining deallocation across all Tier 1, 2, and 
3 growth cells. 

4. Deallocate employment using the same process as was used to deallocate population. 
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